Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 31

1.

Homocitrate Synthase Genes of Two Wide-Host-Range Bradyrhizobium Strains are Differently Required for Symbiosis Depending on Host Plants.

Hashimoto S, Wongdee J, Songwattana P, Greetatorn T, Goto K, Tittabutr P, Boonkerd N, Teaumroong N, Uchiumi T.

Microbes Environ. 2019 Oct 8. doi: 10.1264/jsme2.ME19078. [Epub ahead of print]

2.

Symbiotic properties of a chimeric Nod-independent photosynthetic Bradyrhizobium strain obtained by conjugative transfer of a symbiotic plasmid.

Songwattana P, Tittabutr P, Wongdee J, Teamtisong K, Wulandari D, Teulet A, Fardoux J, Boonkerd N, Giraud E, Teaumroong N.

Environ Microbiol. 2019 May 11. doi: 10.1111/1462-2920.14650. [Epub ahead of print]

PMID:
31077522
3.

Empowering rice seedling growth by endophytic Bradyrhizobium sp. SUTN9-2.

Greetatorn T, Hashimoto S, Sarapat S, Tittabutr P, Boonkerd N, Uchiumi T, Teaumroong N.

Lett Appl Microbiol. 2019 Mar;68(3):258-266. doi: 10.1111/lam.13114. Epub 2019 Feb 6.

PMID:
30637774
4.

Mutualistic co-evolution of T3SSs during the establishment of symbiotic relationships between Vigna radiata and Bradyrhizobia.

Piromyou P, Songwattana P, Teamtisong K, Tittabutr P, Boonkerd N, Tantasawat PA, Giraud E, Göttfert M, Teaumroong N.

Microbiologyopen. 2019 Jan 9:e781. doi: 10.1002/mbo3.781. [Epub ahead of print]

5.

Regulation of Nitrogen Fixation in Bradyrhizobium sp. Strain DOA9 Involves Two Distinct NifA Regulatory Proteins That Are Functionally Redundant During Symbiosis but Not During Free-Living Growth.

Wongdee J, Boonkerd N, Teaumroong N, Tittabutr P, Giraud E.

Front Microbiol. 2018 Jul 24;9:1644. doi: 10.3389/fmicb.2018.01644. eCollection 2018.

6.

Genome Sequence of Bacillus velezensis S141, a New Strain of Plant Growth-Promoting Rhizobacterium Isolated from Soybean Rhizosphere.

Sibponkrung S, Kondo T, Tanaka K, Tittabutr P, Boonkerd N, Teaumroong N, Yoshida KI.

Genome Announc. 2017 Nov 30;5(48). pii: e01312-17. doi: 10.1128/genomeA.01312-17.

7.

Type 3 Secretion System (T3SS) of Bradyrhizobium sp. DOA9 and Its Roles in Legume Symbiosis and Rice Endophytic Association.

Songwattana P, Noisangiam R, Teamtisong K, Prakamhang J, Teulet A, Tittabutr P, Piromyou P, Boonkerd N, Giraud E, Teaumroong N.

Front Microbiol. 2017 Sep 20;8:1810. doi: 10.3389/fmicb.2017.01810. eCollection 2017.

8.

Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation.

Piromyou P, Greetatorn T, Teamtisong K, Tittabutr P, Boonkerd N, Teaumroong N.

Appl Environ Microbiol. 2017 Oct 31;83(22). pii: e01488-17. doi: 10.1128/AEM.01488-17. Print 2017 Nov 15.

9.

Generation of a rabbit single-chain fragment variable (scFv) antibody for specific detection of Bradyrhizobium sp. DOA9 in both free-living and bacteroid forms.

Vu NX, Pruksametanan N, Srila W, Yuttavanichakul W, Teamtisong K, Teaumroong N, Boonkerd N, Tittabutr P, Yamabhai M.

PLoS One. 2017 Jun 27;12(6):e0179983. doi: 10.1371/journal.pone.0179983. eCollection 2017.

10.

Untapped Endophytic Colonization and Plant Growth-Promoting Potential of the Genus Novosphingobium to Optimize Rice Cultivation.

Rangjaroen C, Sungthong R, Rerkasem B, Teaumroong N, Noisangiam R, Lumyong S.

Microbes Environ. 2017 Mar 31;32(1):84-87. doi: 10.1264/jsme2.ME16112. Epub 2017 Feb 21.

11.

nifDK Clusters Located on the Chromosome and Megaplasmid of Bradyrhizobium sp. Strain DOA9 Contribute Differently to Nitrogenase Activity During Symbiosis and Free-Living Growth.

Wongdee J, Songwattana P, Nouwen N, Noisangiam R, Fardoux J, Chaintreuil C, Teaumroong N, Tittabutr P, Giraud E.

Mol Plant Microbe Interact. 2016 Oct;29(10):767-773. Epub 2016 Oct 19.

12.

Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium.

Okubo T, Piromyou P, Tittabutr P, Teaumroong N, Minamisawa K.

Microbes Environ. 2016 Sep 29;31(3):260-7. doi: 10.1264/jsme2.ME15159. Epub 2016 Jul 12.

13.

The evolutionary dynamics of ancient and recent polyploidy in the African semiaquatic species of the legume genus Aeschynomene.

Chaintreuil C, Gully D, Hervouet C, Tittabutr P, Randriambanona H, Brown SC, Lewis GP, Bourge M, Cartieaux F, Boursot M, Ramanankierana H, D'Hont A, Teaumroong N, Giraud E, Arrighi JF.

New Phytol. 2016 Aug;211(3):1077-91. doi: 10.1111/nph.13956. Epub 2016 Apr 7.

14.

Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence.

Tittabutr P, Sripakdi S, Boonkerd N, Tanthanuch W, Minamisawa K, Teaumroong N.

Microbes Environ. 2015;30(4):310-20. doi: 10.1264/jsme2.ME15120. Epub 2015 Dec 9.

15.

The Type III Secretion System (T3SS) is a Determinant for Rice-Endophyte Colonization by Non-Photosynthetic Bradyrhizobium.

Piromyou P, Songwattana P, Greetatorn T, Okubo T, Kakizaki KC, Prakamhang J, Tittabutr P, Boonkerd N, Teaumroong N, Minamisawa K.

Microbes Environ. 2015;30(4):291-300. doi: 10.1264/jsme2.ME15080. Epub 2015 Nov 19.

16.

Rhizobium-legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS.

Okazaki S, Tittabutr P, Teulet A, Thouin J, Fardoux J, Chaintreuil C, Gully D, Arrighi JF, Furuta N, Miwa H, Yasuda M, Nouwen N, Teaumroong N, Giraud E.

ISME J. 2016 Jan;10(1):64-74. doi: 10.1038/ismej.2015.103. Epub 2015 Jul 10.

17.

Genome analysis of a novel Bradyrhizobium sp. DOA9 carrying a symbiotic plasmid.

Okazaki S, Noisangiam R, Okubo T, Kaneko T, Oshima K, Hattori M, Teamtisong K, Songwattana P, Tittabutr P, Boonkerd N, Saeki K, Sato S, Uchiumi T, Minamisawa K, Teaumroong N.

PLoS One. 2015 Feb 24;10(2):e0117392. doi: 10.1371/journal.pone.0117392. eCollection 2015.

18.

Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution.

Piromyou P, Greetatorn T, Teamtisong K, Okubo T, Shinoda R, Nuntakij A, Tittabutr P, Boonkerd N, Minamisawa K, Teaumroong N.

Appl Environ Microbiol. 2015 May 1;81(9):3049-61. doi: 10.1128/AEM.04253-14. Epub 2015 Feb 20.

19.

Characterization of arbuscular mycorrhizal fungus communities of Aquilaria crassna and Tectona grandis roots and soils in Thailand plantations.

Chaiyasen A, Young JP, Teaumroong N, Gavinlertvatana P, Lumyong S.

PLoS One. 2014 Nov 14;9(11):e112591. doi: 10.1371/journal.pone.0112591. eCollection 2014.

20.

Divergent nod-containing Bradyrhizobium sp. DOA9 with a megaplasmid and its host range.

Teamtisong K, Songwattana P, Noisangiam R, Piromyou P, Boonkerd N, Tittabutr P, Minamisawa K, Nantagij A, Okazaki S, Abe M, Uchiumi T, Teaumroong N.

Microbes Environ. 2014;29(4):370-6. doi: 10.1264/jsme2.ME14065. Epub 2014 Oct 4.

21.

Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand.

Rangjaroen C, Rerkasem B, Teaumroong N, Sungthong R, Lumyong S.

Arch Microbiol. 2014 Jan;196(1):35-49. doi: 10.1007/s00203-013-0940-4. Epub 2013 Nov 22.

PMID:
24264469
22.

Biases for detecting arbuscular mycorrhizal fungal mixture by terminal restriction fragment length polymorphism (T-RFLP).

Watanarojanaporn N, Longtonglang A, Boonkerd N, Tittabutr P, Lee J, Teaumroong N.

World J Microbiol Biotechnol. 2014 Jan;30(1):77-86. doi: 10.1007/s11274-013-1423-0. Epub 2013 Jul 10.

PMID:
23839714
23.

Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure.

Watanarojanaporn N, Boonkerd N, Tittabutr P, Longtonglang A, Young JP, Teaumroong N.

Microbes Environ. 2013;28(3):316-24. Epub 2013 May 29.

24.

Genome analysis suggests that the soil oligotrophic bacterium Agromonas oligotrophica (Bradyrhizobium oligotrophicum) is a nitrogen-fixing symbiont of Aeschynomene indica.

Okubo T, Fukushima S, Itakura M, Oshima K, Longtonglang A, Teaumroong N, Mitsui H, Hattori M, Hattori R, Hattori T, Minamisawa K.

Appl Environ Microbiol. 2013 Apr;79(8):2542-51. doi: 10.1128/AEM.00009-13. Epub 2013 Feb 8.

25.

Genetic diversity, symbiotic evolution, and proposed infection process of Bradyrhizobium strains isolated from root nodules of Aeschynomene americana L. in Thailand.

Noisangiam R, Teamtisong K, Tittabutr P, Boonkerd N, Toshiki U, Minamisawa K, Teaumroong N.

Appl Environ Microbiol. 2012 Sep;78(17):6236-50. doi: 10.1128/AEM.00897-12. Epub 2012 Jun 29.

26.

Heavy metal tolerant Metalliresistens boonkerdii gen. nov., sp. nov., a new genus in the family Bradyrhizobiaceae isolated from soil in Thailand.

Noisangiam R, Nuntagij A, Pongsilp N, Boonkerd N, Denduangboripant J, Ronson C, Teaumroong N.

Syst Appl Microbiol. 2010 Nov;33(7):374-82. doi: 10.1016/j.syapm.2010.06.002. Epub 2010 Jul 21. Erratum in: Syst Appl Microbiol. 2011 Apr;34(2):166-8.

PMID:
20663625
27.

Identification of salt-tolerant Sinorhizobium sp. strain BL3 membrane proteins based on proteomics.

Tanthanuch W, Tittabutr P, Mohammed S, Matthiesen R, Yamabhai M, Manassila M, Jensen ON, Boonkerd N, Teaumroong N.

Microbes Environ. 2010;25(4):275-80.

28.

Changes in bacterial community composition in the system of rice intensification (SRI) in Chiang Mai, Thailand.

Sooksa-Nguan T, Gypmantasiri P, Boonkerd N, Thies JE, Teaumroong N.

Microbes Environ. 2010;25(3):224-7.

29.

The alternative sigma factor RpoH2 is required for salt tolerance in Sinorhizobium sp. strain BL3.

Tittabutr P, Payakapong W, Teaumroong N, Boonkerd N, Singleton PW, Borthakur D.

Res Microbiol. 2006 Nov;157(9):811-8. Epub 2006 Aug 2.

PMID:
16934437
30.

A histidine kinase sensor protein gene is necessary for induction of low pH tolerance in Sinorhizobium sp. strain BL3.

Tittabutr P, Payakapong W, Teaumroong N, Boonkerd N, Singleton PW, Borthakur D.

Antonie Van Leeuwenhoek. 2006 Jan;89(1):125-34. Epub 2005 Dec 8.

PMID:
16341462
31.

Anaerobic nitrogen-fixing consortia consisting of clostridia isolated from gramineous plants.

Minamisawa K, Nishioka K, Miyaki T, Ye B, Miyamoto T, You M, Saito A, Saito M, Barraquio WL, Teaumroong N, Sein T, Sato T.

Appl Environ Microbiol. 2004 May;70(5):3096-102.

Supplemental Content

Loading ...
Support Center