Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 53

1.

In silico and Wet Bench Interactomics Sheds Light on the Similitudes and Differences between Human ROCO Proteins.

Taymans JM, Chartier-Harlin MC.

Proteomics. 2018 Jul;18(13):e1800103. doi: 10.1002/pmic.201800103. Epub 2018 Jun 13.

PMID:
29791783
2.

Parkinson disease-associated mutations in LRRK2 cause centrosomal defects via Rab8a phosphorylation.

Madero-Pérez J, Fdez E, Fernández B, Lara Ordóñez AJ, Blanca Ramírez M, Gómez-Suaga P, Waschbüsch D, Lobbestael E, Baekelandt V, Nairn AC, Ruiz-Martínez J, Aiastui A, López de Munain A, Lis P, Comptdaer T, Taymans JM, Chartier-Harlin MC, Beilina A, Gonnelli A, Cookson MR, Greggio E, Hilfiker S.

Mol Neurodegener. 2018 Jan 23;13(1):3. doi: 10.1186/s13024-018-0235-y.

3.

PAK6 Phosphorylates 14-3-3γ to Regulate Steady State Phosphorylation of LRRK2.

Civiero L, Cogo S, Kiekens A, Morganti C, Tessari I, Lobbestael E, Baekelandt V, Taymans JM, Chartier-Harlin MC, Franchin C, Arrigoni G, Lewis PA, Piccoli G, Bubacco L, Cookson MR, Pinton P, Greggio E.

Front Mol Neurosci. 2017 Dec 14;10:417. doi: 10.3389/fnmol.2017.00417. eCollection 2017.

4.

Cryo-EM analysis of homodimeric full-length LRRK2 and LRRK1 protein complexes.

Sejwal K, Chami M, Rémigy H, Vancraenenbroeck R, Sibran W, Sütterlin R, Baumgartner P, McLeod R, Chartier-Harlin MC, Baekelandt V, Stahlberg H, Taymans JM.

Sci Rep. 2017 Aug 17;7(1):8667. doi: 10.1038/s41598-017-09126-z.

5.

Role of LRRK2 in the regulation of dopamine receptor trafficking.

Rassu M, Del Giudice MG, Sanna S, Taymans JM, Morari M, Brugnoli A, Frassineti M, Masala A, Esposito S, Galioto M, Valle C, Carri MT, Biosa A, Greggio E, Crosio C, Iaccarino C.

PLoS One. 2017 Jun 5;12(6):e0179082. doi: 10.1371/journal.pone.0179082. eCollection 2017.

6.

GTP binding regulates cellular localization of Parkinson's disease-associated LRRK2.

Blanca Ramírez M, Lara Ordóñez AJ, Fdez E, Madero-Pérez J, Gonnelli A, Drouyer M, Chartier-Harlin MC, Taymans JM, Bubacco L, Greggio E, Hilfiker S.

Hum Mol Genet. 2017 Jul 15;26(14):2747-2767. doi: 10.1093/hmg/ddx161.

7.

Regulation of LRRK2 by Phosphatases.

Taymans JM.

Adv Neurobiol. 2017;14:145-160. doi: 10.1007/978-3-319-49969-7_8. Review.

PMID:
28353283
8.

LRRK2 detection in human biofluids: potential use as a Parkinson's disease biomarker?

Taymans JM, Mutez E, Drouyer M, Sibran W, Chartier-Harlin MC.

Biochem Soc Trans. 2017 Feb 8;45(1):207-212. doi: 10.1042/BST20160334. Review.

PMID:
28202674
9.

Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation.

Lobbestael E, Civiero L, De Wit T, Taymans JM, Greggio E, Baekelandt V.

Sci Rep. 2016 Sep 23;6:33897. doi: 10.1038/srep33897.

10.

LRRK2 Kinase Inhibition as a Therapeutic Strategy for Parkinson's Disease, Where Do We Stand?

Taymans JM, Greggio E.

Curr Neuropharmacol. 2016;14(3):214-25. Review.

11.

Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain.

Civiero L, Cirnaru MD, Beilina A, Rodella U, Russo I, Belluzzi E, Lobbestael E, Reyniers L, Hondhamuni G, Lewis PA, Van den Haute C, Baekelandt V, Bandopadhyay R, Bubacco L, Piccoli G, Cookson MR, Taymans JM, Greggio E.

J Neurochem. 2015 Dec;135(6):1242-56. doi: 10.1111/jnc.13369. Epub 2015 Oct 19.

12.

Deregulation of protein translation control, a potential game-changing hypothesis for Parkinson's disease pathogenesis.

Taymans JM, Nkiliza A, Chartier-Harlin MC.

Trends Mol Med. 2015 Aug;21(8):466-72. doi: 10.1016/j.molmed.2015.05.004. Epub 2015 Jun 17. Review.

PMID:
26091824
13.

Chemical genetic approach identifies microtubule affinity-regulating kinase 1 as a leucine-rich repeat kinase 2 substrate.

Krumova P, Reyniers L, Meyer M, Lobbestael E, Stauffer D, Gerrits B, Muller L, Hoving S, Kaupmann K, Voshol J, Fabbro D, Bauer A, Rovelli G, Taymans JM, Bouwmeester T, Baekelandt V.

FASEB J. 2015 Jul;29(7):2980-92. doi: 10.1096/fj.14-262329. Epub 2015 Apr 8.

PMID:
25854701
14.

Phosphatases of α-synuclein, LRRK2, and tau: important players in the phosphorylation-dependent pathology of Parkinsonism.

Taymans JM, Baekelandt V.

Front Genet. 2014 Nov 7;5:382. doi: 10.3389/fgene.2014.00382. eCollection 2014. Review.

15.

Indolinone based LRRK2 kinase inhibitors with a key hydrogen bond.

Göring S, Taymans JM, Baekelandt V, Schmidt B.

Bioorg Med Chem Lett. 2014 Oct 1;24(19):4630-4637. doi: 10.1016/j.bmcl.2014.08.049. Epub 2014 Aug 29.

PMID:
25219901
16.

Regulation and targeting of enzymes mediating Parkinson's disease pathogenesis: focus on Parkinson's disease kinases, GTPases, and ATPases.

Taymans JM, Baekelandt V, Harvey K.

Front Mol Neurosci. 2014 Jul 29;7:71. doi: 10.3389/fnmol.2014.00071. eCollection 2014. No abstract available.

17.

Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways.

Reyniers L, Del Giudice MG, Civiero L, Belluzzi E, Lobbestael E, Beilina A, Arrigoni G, Derua R, Waelkens E, Li Y, Crosio C, Iaccarino C, Cookson MR, Baekelandt V, Greggio E, Taymans JM.

J Neurochem. 2014 Oct;131(2):239-50. doi: 10.1111/jnc.12798. Epub 2014 Jul 14.

18.

In silico, in vitro and cellular analysis with a kinome-wide inhibitor panel correlates cellular LRRK2 dephosphorylation to inhibitor activity on LRRK2.

Vancraenenbroeck R, De Raeymaecker J, Lobbestael E, Gao F, De Maeyer M, Voet A, Baekelandt V, Taymans JM.

Front Mol Neurosci. 2014 Jun 3;7:51. doi: 10.3389/fnmol.2014.00051. eCollection 2014.

19.
20.

Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease.

Beilina A, Rudenko IN, Kaganovich A, Civiero L, Chau H, Kalia SK, Kalia LV, Lobbestael E, Chia R, Ndukwe K, Ding J, Nalls MA; International Parkinson’s Disease Genomics Consortium; North American Brain Expression Consortium, Olszewski M, Hauser DN, Kumaran R, Lozano AM, Baekelandt V, Greene LE, Taymans JM, Greggio E, Cookson MR.

Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2626-31. doi: 10.1073/pnas.1318306111. Epub 2014 Feb 7.

21.

In vitro phosphorylation does not influence the aggregation kinetics of WT α-synuclein in contrast to its phosphorylation mutants.

Schreurs S, Gerard M, Derua R, Waelkens E, Taymans JM, Baekelandt V, Engelborghs Y.

Int J Mol Sci. 2014 Jan 15;15(1):1040-67. doi: 10.3390/ijms15011040.

22.

A direct interaction between leucine-rich repeat kinase 2 and specific β-tubulin isoforms regulates tubulin acetylation.

Law BM, Spain VA, Leinster VH, Chia R, Beilina A, Cho HJ, Taymans JM, Urban MK, Sancho RM, Blanca Ramírez M, Biskup S, Baekelandt V, Cai H, Cookson MR, Berwick DC, Harvey K.

J Biol Chem. 2014 Jan 10;289(2):895-908. doi: 10.1074/jbc.M113.507913. Epub 2013 Nov 25.

23.

Metabolic labeling of leucine rich repeat kinases 1 and 2 with radioactive phosphate.

Taymans JM, Gao F, Baekelandt V.

J Vis Exp. 2013 Sep 18;(79):e50523. doi: 10.3791/50523.

24.

Identification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle.

Lobbestael E, Zhao J, Rudenko IN, Beylina A, Gao F, Wetter J, Beullens M, Bollen M, Cookson MR, Baekelandt V, Nichols RJ, Taymans JM.

Biochem J. 2013 Nov 15;456(1):119-28. doi: 10.1042/BJ20121772.

25.

MicroRNA-205 regulates the expression of Parkinson's disease-related leucine-rich repeat kinase 2 protein.

Cho HJ, Liu G, Jin SM, Parisiadou L, Xie C, Yu J, Sun L, Ma B, Ding J, Vancraenenbroeck R, Lobbestael E, Baekelandt V, Taymans JM, He P, Troncoso JC, Shen Y, Cai H.

Hum Mol Genet. 2013 Feb 1;22(3):608-20. doi: 10.1093/hmg/dds470. Epub 2012 Nov 2.

26.

Phosphorylation of LRRK2: from kinase to substrate.

Lobbestael E, Baekelandt V, Taymans JM.

Biochem Soc Trans. 2012 Oct;40(5):1102-10. Review.

PMID:
22988873
27.

The GTPase function of LRRK2.

Taymans JM.

Biochem Soc Trans. 2012 Oct;40(5):1063-9. Review.

PMID:
22988866
28.

Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers.

Civiero L, Vancraenenbroeck R, Belluzzi E, Beilina A, Lobbestael E, Reyniers L, Gao F, Micetic I, De Maeyer M, Bubacco L, Baekelandt V, Cookson MR, Greggio E, Taymans JM.

PLoS One. 2012;7(8):e43472. doi: 10.1371/journal.pone.0043472. Epub 2012 Aug 29.

29.

Introduction to the journal of learning disabilities special issue: adults with learning disabilities in adult education.

Taymans JM, Kosaraju S.

J Learn Disabil. 2012 Jan-Feb;45(1):3-4. doi: 10.1177/0022219411426860. No abstract available.

PMID:
22267406
30.

Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2.

Vancraenenbroeck R, Lobbestael E, Weeks SD, Strelkov SV, Baekelandt V, Taymans JM, De Maeyer M.

Biochim Biophys Acta. 2012 Mar;1824(3):450-60. doi: 10.1016/j.bbapap.2011.12.009. Epub 2012 Jan 11.

PMID:
22251894
31.

Legal and definitional issues affecting the identification and education of adults with specific learning disabilities in adult education programs.

Taymans JM.

J Learn Disabil. 2012 Jan-Feb;45(1):5-16. doi: 10.1177/0022219411426857. Epub 2011 Dec 1.

PMID:
22134963
32.

LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding.

Taymans JM, Vancraenenbroeck R, Ollikainen P, Beilina A, Lobbestael E, De Maeyer M, Baekelandt V, Cookson MR.

PLoS One. 2011;6(8):e23207. doi: 10.1371/journal.pone.0023207. Epub 2011 Aug 12.

33.

Kinases as targets for Parkinson's disease: from genetics to therapy.

Vancraenenbroeck R, Lobbestael E, Maeyer MD, Baekelandt V, Taymans JM.

CNS Neurol Disord Drug Targets. 2011 Sep 1;10(6):724-40. Review.

PMID:
21838679
34.

On the road to leucine-rich repeat kinase 2 signalling: evidence from cellular and in vivo studies.

Daniëls V, Baekelandt V, Taymans JM.

Neurosignals. 2011;19(1):1-15. doi: 10.1159/000324488. Epub 2011 Mar 23. Review.

35.

Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant.

Daniëls V, Vancraenenbroeck R, Law BM, Greggio E, Lobbestael E, Gao F, De Maeyer M, Cookson MR, Harvey K, Baekelandt V, Taymans JM.

J Neurochem. 2011 Jan;116(2):304-15. doi: 10.1111/j.1471-4159.2010.07105.x.

36.

Automated quantitative gait analysis in animal models of movement disorders.

Vandeputte C, Taymans JM, Casteels C, Coun F, Ni Y, Van Laere K, Baekelandt V.

BMC Neurosci. 2010 Aug 9;11:92. doi: 10.1186/1471-2202-11-92.

37.

Immunohistochemical detection of transgene expression in the brain using small epitope tags.

Lobbestael E, Reumers V, Ibrahimi A, Paesen K, Thiry I, Gijsbers R, Van den Haute C, Debyser Z, Baekelandt V, Taymans JM.

BMC Biotechnol. 2010 Feb 18;10:16. doi: 10.1186/1472-6750-10-16.

38.

Inhibition of FK506 binding proteins reduces alpha-synuclein aggregation and Parkinson's disease-like pathology.

Gerard M, Deleersnijder A, Daniëls V, Schreurs S, Munck S, Reumers V, Pottel H, Engelborghs Y, Van den Haute C, Taymans JM, Debyser Z, Baekelandt V.

J Neurosci. 2010 Feb 17;30(7):2454-63. doi: 10.1523/JNEUROSCI.5983-09.2010.

39.

Mechanisms in dominant parkinsonism: The toxic triangle of LRRK2, alpha-synuclein, and tau.

Taymans JM, Cookson MR.

Bioessays. 2010 Mar;32(3):227-35. doi: 10.1002/bies.200900163.

40.

The Parkinson's disease associated LRRK2 exhibits weaker in vitro phosphorylation of 4E-BP compared to autophosphorylation.

Kumar A, Greggio E, Beilina A, Kaganovich A, Chan D, Taymans JM, Wolozin B, Cookson MR.

PLoS One. 2010 Jan 15;5(1):e8730. doi: 10.1371/journal.pone.0008730.

41.

Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis.

Parisiadou L, Xie C, Cho HJ, Lin X, Gu XL, Long CX, Lobbestael E, Baekelandt V, Taymans JM, Sun L, Cai H.

J Neurosci. 2009 Nov 4;29(44):13971-80. doi: 10.1523/JNEUROSCI.3799-09.2009.

42.

The Parkinson's disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites.

Greggio E, Taymans JM, Zhen EY, Ryder J, Vancraenenbroeck R, Beilina A, Sun P, Deng J, Jaffe H, Baekelandt V, Merchant K, Cookson MR.

Biochem Biophys Res Commun. 2009 Nov 20;389(3):449-54. doi: 10.1016/j.bbrc.2009.08.163. Epub 2009 Sep 3.

43.

The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation.

Greggio E, Zambrano I, Kaganovich A, Beilina A, Taymans JM, Daniëls V, Lewis P, Jain S, Ding J, Syed A, Thomas KJ, Baekelandt V, Cookson MR.

J Biol Chem. 2008 Jun 13;283(24):16906-14. doi: 10.1074/jbc.M708718200. Epub 2008 Apr 8.

44.

Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain.

Taymans JM, Vandenberghe LH, Haute CV, Thiry I, Deroose CM, Mortelmans L, Wilson JM, Debyser Z, Baekelandt V.

Hum Gene Ther. 2007 Mar;18(3):195-206.

PMID:
17343566
45.

Distribution of PINK1 and LRRK2 in rat and mouse brain.

Taymans JM, Van den Haute C, Baekelandt V.

J Neurochem. 2006 Aug;98(3):951-61. Epub 2006 Jun 12.

48.

MK-801 alters RGS2 levels and adenylyl cyclase sensitivity in the rat striatum.

Taymans JM, Cruz C, Lesage A, Leysen JE, Langlois X.

Neuroreport. 2005 Feb 8;16(2):159-62.

PMID:
15671868
49.

Dopamine receptor-mediated regulation of RGS2 and RGS4 mRNA differentially depends on ascending dopamine projections and time.

Taymans JM, Kia HK, Claes R, Cruz C, Leysen J, Langlois X.

Eur J Neurosci. 2004 Apr;19(8):2249-60.

PMID:
15090051
50.

Supplemental Content

Loading ...
Support Center