Sort by
Items per page

Send to

Choose Destination

Search results

Items: 48


The Control of Cell Expansion, Cell Division, and Vascular Development by Brassinosteroids: A Historical Perspective.

Oh MH, Honey SH, Tax FE.

Int J Mol Sci. 2020 Mar 4;21(5). pii: E1743. doi: 10.3390/ijms21051743. Review.


SERK Receptor-like Kinases Control Division Patterns of Vascular Precursors and Ground Tissue Stem Cells during Embryo Development in Arabidopsis.

Li H, Cai Z, Wang X, Li M, Cui Y, Cui N, Yang F, Zhu M, Zhao J, Du W, He K, Yi J, Tax FE, Hou S, Li J, Gou X.

Mol Plant. 2019 Jul 1;12(7):984-1002. doi: 10.1016/j.molp.2019.04.011. Epub 2019 May 3.


Lateral root growth in Arabidopsis is controlled by short and long distance signaling through the LRR RLKs XIP1/CEPR1 and CEPR2.

Dimitrov I, Tax FE.

Plant Signal Behav. 2018;13(6):e1489667. doi: 10.1080/15592324.2018.1489667. Epub 2018 Jul 11.


A Common Pathway of Root Growth Control and Response to CLE Peptides Through Two Receptor Kinases in Arabidopsis.

Racolta A, Nodine MD, Davies K, Lee C, Rowe S, Velazco Y, Wellington R, Tax FE.

Genetics. 2018 Feb;208(2):687-704. doi: 10.1534/genetics.117.300148. Epub 2017 Nov 29.


The Arabidopsis Leucine-Rich Repeat Receptor Kinase BIR3 Negatively Regulates BAK1 Receptor Complex Formation and Stabilizes BAK1.

Imkampe J, Halter T, Huang S, Schulze S, Mazzotta S, Schmidt N, Manstretta R, Postel S, Wierzba M, Yang Y, van Dongen WMAM, Stahl M, Zipfel C, Goshe MB, Clouse S, de Vries SC, Tax F, Wang X, Kemmerling B.

Plant Cell. 2017 Sep;29(9):2285-2303. doi: 10.1105/tpc.17.00376. Epub 2017 Aug 25.


Scanning for New BRI1 Mutations via TILLING Analysis.

Sun C, Yan K, Han JT, Tao L, Lv MH, Shi T, He YX, Wierzba M, Tax FE, Li J.

Plant Physiol. 2017 Jul;174(3):1881-1896. doi: 10.1104/pp.17.00118. Epub 2017 May 1.


Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication.

Shi T, Dimitrov I, Zhang Y, Tax FE, Yi J, Gou X, Li J.

Plant Mol Biol. 2015 Oct;89(3):253-61. doi: 10.1007/s11103-015-0366-2. Epub 2015 Sep 11.


AtPEPTIDE RECEPTOR2 mediates the AtPEPTIDE1-induced cytosolic Ca(2+) rise, which is required for the suppression of Glutamine Dumper gene expression in Arabidopsis roots.

Ma C, Guo J, Kang Y, Doman K, Bryan AC, Tax FE, Yamaguchi Y, Qi Z.

J Integr Plant Biol. 2014 Jul;56(7):684-94. doi: 10.1111/jipb.12171. Epub 2014 Mar 13.


The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity.

Halter T, Imkampe J, Mazzotta S, Wierzba M, Postel S, Bücherl C, Kiefer C, Stahl M, Chinchilla D, Wang X, Nürnberger T, Zipfel C, Clouse S, Borst JW, Boeren S, de Vries SC, Tax F, Kemmerling B.

Curr Biol. 2014 Jan 20;24(2):134-43. doi: 10.1016/j.cub.2013.11.047. Epub 2014 Jan 2.


Receptor-like kinases: key regulators of plant development and defense.

Li J, Tax FE.

J Integr Plant Biol. 2013 Dec;55(12):1184-7. doi: 10.1111/jipb.12129. No abstract available.


The receptor-like kinases GSO1 and GSO2 together regulate root growth in Arabidopsis through control of cell division and cell fate specification.

Racolta A, Bryan AC, Tax FE.

Dev Dyn. 2014 Feb;243(2):257-78. doi: 10.1002/dvdy.24066. Epub 2013 Nov 13.


Notes from the underground: receptor-like kinases in Arabidopsis root development.

Wierzba MP, Tax FE.

J Integr Plant Biol. 2013 Dec;55(12):1224-37. doi: 10.1111/jipb.12088. Epub 2013 Oct 10. Review.


The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner.

Mosher S, Seybold H, Rodriguez P, Stahl M, Davies KA, Dayaratne S, Morillo SA, Wierzba M, Favery B, Keller H, Tax FE, Kemmerling B.

Plant J. 2013 Feb;73(3):469-82. doi: 10.1111/tpj.12050. Epub 2012 Nov 26.


Synergistic interaction of CLAVATA1, CLAVATA2, and RECEPTOR-LIKE PROTEIN KINASE 2 in cyst nematode parasitism of Arabidopsis.

Replogle A, Wang J, Paolillo V, Smeda J, Kinoshita A, Durbak A, Tax FE, Wang X, Sawa S, Mitchum MG.

Mol Plant Microbe Interact. 2013 Jan;26(1):87-96. doi: 10.1094/MPMI-05-12-0118-FI.


XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana.

Bryan AC, Obaidi A, Wierzba M, Tax FE.

Planta. 2012 Jan;235(1):111-22. doi: 10.1007/s00425-011-1489-6. Epub 2011 Aug 19.


CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems.

Durbak AR, Tax FE.

Genetics. 2011 Sep;189(1):177-94. doi: 10.1534/genetics.111.130930. Epub 2011 Jul 29.


A few standing for many: embryo receptor-like kinases.

Nodine MD, Bryan AC, Racolta A, Jerosky KV, Tax FE.

Trends Plant Sci. 2011 Apr;16(4):211-7. doi: 10.1016/j.tplants.2011.01.005. Epub 2011 Feb 23. Review.


Intragenic suppression of a trafficking-defective brassinosteroid receptor mutant in Arabidopsis.

Belkhadir Y, Durbak A, Wierzba M, Schmitz RJ, Aguirre A, Michel R, Rowe S, Fujioka S, Tax FE.

Genetics. 2010 Aug;185(4):1283-96. doi: 10.1534/genetics.109.111898. Epub 2010 May 10.


PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis.

Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA.

Plant Cell. 2010 Feb;22(2):508-22. doi: 10.1105/tpc.109.068874. Epub 2010 Feb 23.


Prepping Students for Authentic Science.

Dolan EL, Lally DJ, Brooks E, Tax FE.

Sci Teach. 2008 Oct 1;75(7):38-43. No abstract available.


Two receptor-like kinases required together for the establishment of Arabidopsis cotyledon primordia.

Nodine MD, Tax FE.

Dev Biol. 2008 Feb 1;314(1):161-70. Epub 2007 Nov 29.


Sowing the seeds of dialogue: public engagement through plant science.

Lally D, Brooks E, Tax FE, Dolan EL.

Plant Cell. 2007 Aug;19(8):2311-9. Epub 2007 Aug 31. No abstract available.


Functional analysis of receptor-like kinases in monocots and dicots.

Morillo SA, Tax FE.

Curr Opin Plant Biol. 2006 Oct;9(5):460-9. Epub 2006 Jul 28. Review.


CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana.

Kim GT, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S, Tsukaya H.

Plant J. 2005 Mar;41(5):710-21.


CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development.

Diévart A, Dalal M, Tax FE, Lacey AD, Huttly A, Li J, Clark SE.

Plant Cell. 2003 May;15(5):1198-211.


Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3beta-like kinase.

Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE.

Plant Physiol. 2002 Nov;130(3):1506-15.


Two putative BIN2 substrates are nuclear components of brassinosteroid signaling.

Zhao J, Peng P, Schmitz RJ, Decker AD, Tax FE, Li J.

Plant Physiol. 2002 Nov;130(3):1221-9.


BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling.

Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC.

Cell. 2002 Jul 26;110(2):213-22.


BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana.

Li J, Lease KA, Tax FE, Walker JC.

Proc Natl Acad Sci U S A. 2001 May 8;98(10):5916-21. Epub 2001 Apr 24.


CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis.

Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R.

Plant Cell. 2001 Jan;13(1):101-11.


Biosynthetic pathways of brassinolide in Arabidopsis.

Noguchi T, Fujioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA.

Plant Physiol. 2000 Sep;124(1):201-9. Erratum in: Plant Physiol 2000 Oct;124(2):920.


Lesions in the sterol delta reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis.

Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross AS, Tax FE, Yoshida S, Feldmann KA.

Plant J. 2000 Mar;21(5):431-43.


PlantsP: a functional genomics database for plant phosphorylation.

Gribskov M, Fana F, Harper J, Hope DA, Harmon AC, Smith DW, Tax FE, Zhang G.

Nucleic Acids Res. 2001 Jan 1;29(1):111-3.


Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids.

Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE.

Plant Physiol. 1999 Nov;121(3):743-52.


The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis.

Choe S, Dilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax FE, Feldmann KA.

Plant Physiol. 1999 Mar;119(3):897-907.


The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis.

Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BD, Ross AS, Tanaka A, Yoshida S, Tax FE, Feldmann KA.

Plant Cell. 1999 Feb;11(2):207-21.


Identification and characterization of genes that interact with lin-12 in Caenorhabditis elegans.

Tax FE, Thomas JH, Ferguson EL, Horvitz HR.

Genetics. 1997 Dec;147(4):1675-95.


Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport.

Krysan PJ, Young JC, Tax F, Sussman MR.

Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8145-50.


Cell-cell interactions. Receiving signals in the nematode embryo.

Tax FE, Thomas JH.

Curr Biol. 1994 Oct 1;4(10):914-6.


Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila.

Tax FE, Yeargers JJ, Thomas JH.

Nature. 1994 Mar 10;368(6467):150-4.


Supplemental Content

Support Center