Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 37

1.

An influenza virus-triggered SUMO switch orchestrates co-opted endogenous retroviruses to stimulate host antiviral immunity.

Schmidt N, Domingues P, Golebiowski F, Patzina C, Tatham MH, Hay RT, Hale BG.

Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17399-17408. doi: 10.1073/pnas.1907031116. Epub 2019 Aug 7.

2.

Multiomics Analyses of HNF4α Protein Domain Function during Human Pluripotent Stem Cell Differentiation.

Wang Y, Tatham MH, Schmidt-Heck W, Swann C, Singh-Dolt K, Meseguer-Ripolles J, Lucendo-Villarin B, Kunath T, Rudd TR, Smith AJH, Hengstler JG, Godoy P, Hay RT, Hay DC.

iScience. 2019 Jun 28;16:206-217. doi: 10.1016/j.isci.2019.05.028. Epub 2019 May 24.

3.

Identification of Endogenous Adenomatous Polyposis Coli Interaction Partners and β-Catenin-Independent Targets by Proteomics.

Popow O, Paulo JA, Tatham MH, Volk MS, Rojas-Fernandez A, Loyer N, Newton IP, Januschke J, Haigis KM, Näthke I.

Mol Cancer Res. 2019 Sep;17(9):1828-1841. doi: 10.1158/1541-7786.MCR-18-1154. Epub 2019 Jun 3.

PMID:
31160382
4.

Expanded Interactome of the Intrinsically Disordered Protein Dss1.

Schenstrøm SM, Rebula CA, Tatham MH, Hendus-Altenburger R, Jourdain I, Hay RT, Kragelund BB, Hartmann-Petersen R.

Cell Rep. 2018 Oct 23;25(4):862-870. doi: 10.1016/j.celrep.2018.09.080.

5.

Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations.

Nielsen SV, Stein A, Dinitzen AB, Papaleo E, Tatham MH, Poulsen EG, Kassem MM, Rasmussen LJ, Lindorff-Larsen K, Hartmann-Petersen R.

PLoS Genet. 2017 Apr 19;13(4):e1006739. doi: 10.1371/journal.pgen.1006739. eCollection 2017 Apr.

6.

Ufd1-Npl4 Recruit Cdc48 for Disassembly of Ubiquitylated CMG Helicase at the End of Chromosome Replication.

Maric M, Mukherjee P, Tatham MH, Hay R, Labib K.

Cell Rep. 2017 Mar 28;18(13):3033-3042. doi: 10.1016/j.celrep.2017.03.020.

7.

Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway.

Ugun-Klusek A, Tatham MH, Elkharaz J, Constantin-Teodosiu D, Lawler K, Mohamed H, Paine SM, Anderson G, John Mayer R, Lowe J, Ellen Billett E, Bedford L.

Cell Death Dis. 2017 Jan 5;8(1):e2531. doi: 10.1038/cddis.2016.443.

8.

A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome.

Tatham MH, Cole C, Scullion P, Wilkie R, Westwood NJ, Stark LA, Hay RT.

Mol Cell Proteomics. 2017 Feb;16(2):310-326. doi: 10.1074/mcp.O116.065219. Epub 2016 Dec 2.

9.

Identification of RNF168 as a PML nuclear body regulator.

Shire K, Wong AI, Tatham MH, Anderson OF, Ripsman D, Gulstene S, Moffat J, Hay RT, Frappier L.

J Cell Sci. 2016 Feb 1;129(3):580-91. doi: 10.1242/jcs.176446. Epub 2015 Dec 16.

10.

Global Reprogramming of Host SUMOylation during Influenza Virus Infection.

Domingues P, Golebiowski F, Tatham MH, Lopes AM, Taggart A, Hay RT, Hale BG.

Cell Rep. 2015 Nov 17;13(7):1467-1480. doi: 10.1016/j.celrep.2015.10.001. Epub 2015 Nov 5.

11.

Proteome-wide identification of SUMO modification sites by mass spectrometry.

Tammsalu T, Matic I, Jaffray EG, Ibrahim AF, Tatham MH, Hay RT.

Nat Protoc. 2015 Sep;10(9):1374-88. doi: 10.1038/nprot.2015.095. Epub 2015 Aug 20.

PMID:
26292070
12.

Analysis of the SUMO2 Proteome during HSV-1 Infection.

Sloan E, Tatham MH, Groslambert M, Glass M, Orr A, Hay RT, Everett RD.

PLoS Pathog. 2015 Jul 22;11(7):e1005059. doi: 10.1371/journal.ppat.1005059. eCollection 2015 Jul.

13.

Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers.

Bett JS, Ritorto MS, Ewan R, Jaffray EG, Virdee S, Chin JW, Knebel A, Kurz T, Trost M, Tatham MH, Hay RT.

Biochem J. 2015 Mar 15;466(3):489-98. doi: 10.1042/BJ20141349.

14.

Dss1 is a 26S proteasome ubiquitin receptor.

Paraskevopoulos K, Kriegenburg F, Tatham MH, Rösner HI, Medina B, Larsen IB, Brandstrup R, Hardwick KG, Hay RT, Kragelund BB, Hartmann-Petersen R, Gordon C.

Mol Cell. 2014 Nov 6;56(3):453-61. doi: 10.1016/j.molcel.2014.09.008. Epub 2014 Oct 9.

15.

Proteome-wide identification of SUMO2 modification sites.

Tammsalu T, Matic I, Jaffray EG, Ibrahim AFM, Tatham MH, Hay RT.

Sci Signal. 2014 Apr 29;7(323):rs2. doi: 10.1126/scisignal.2005146.

16.

SUMO chain-induced dimerization activates RNF4.

Rojas-Fernandez A, Plechanovová A, Hattersley N, Jaffray E, Tatham MH, Hay RT.

Mol Cell. 2014 Mar 20;53(6):880-92. doi: 10.1016/j.molcel.2014.02.031.

17.

Ube2W conjugates ubiquitin to α-amino groups of protein N-termini.

Tatham MH, Plechanovová A, Jaffray EG, Salmen H, Hay RT.

Biochem J. 2013 Jul 1;453(1):137-45. doi: 10.1042/BJ20130244.

18.

Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis.

Plechanovová A, Jaffray EG, Tatham MH, Naismith JH, Hay RT.

Nature. 2012 Sep 6;489(7414):115-20. doi: 10.1038/nature11376.

19.

Comparative proteomic analysis identifies a role for SUMO in protein quality control.

Tatham MH, Matic I, Mann M, Hay RT.

Sci Signal. 2011 Jun 21;4(178):rs4. doi: 10.1126/scisignal.2001484.

20.

Purification and identification of endogenous polySUMO conjugates.

Bruderer R, Tatham MH, Plechanovova A, Matic I, Garg AK, Hay RT.

EMBO Rep. 2011 Feb;12(2):142-8. doi: 10.1038/embor.2010.206. Epub 2011 Jan 21.

21.

SUMOylation of the GTPase Rac1 is required for optimal cell migration.

Castillo-Lluva S, Tatham MH, Jones RC, Jaffray EG, Edmondson RD, Hay RT, Malliri A.

Nat Cell Biol. 2010 Nov;12(11):1078-85. doi: 10.1038/ncb2112. Epub 2010 Oct 10.

22.

High-stringency tandem affinity purification of proteins conjugated to ubiquitin-like moieties.

Golebiowski F, Tatham MH, Nakamura A, Hay RT.

Nat Protoc. 2010 May;5(5):873-82. doi: 10.1038/nprot.2010.40. Epub 2010 Apr 15.

PMID:
20431533
23.

Detection of protein SUMOylation in vivo.

Tatham MH, Rodriguez MS, Xirodimas DP, Hay RT.

Nat Protoc. 2009;4(9):1363-71. doi: 10.1038/nprot.2009.128. Epub 2009 Sep 3.

PMID:
19730420
24.

System-wide changes to SUMO modifications in response to heat shock.

Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT.

Sci Signal. 2009 May 26;2(72):ra24. doi: 10.1126/scisignal.2000282.

25.

FRET-based in vitro assays for the analysis of SUMO protease activities.

Tatham MH, Hay RT.

Methods Mol Biol. 2009;497:253-68. doi: 10.1007/978-1-59745-566-4_17. Review.

PMID:
19107423
26.

RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation.

Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT.

Nat Cell Biol. 2008 May;10(5):538-46. doi: 10.1038/ncb1716. Epub 2008 Apr 13.

PMID:
18408734
27.

Quantitative analysis of multi-protein interactions using FRET: application to the SUMO pathway.

Martin SF, Tatham MH, Hay RT, Samuel ID.

Protein Sci. 2008 Apr;17(4):777-84. doi: 10.1110/ps.073369608.

28.

In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy.

Matic I, van Hagen M, Schimmel J, Macek B, Ogg SC, Tatham MH, Hay RT, Lamond AI, Mann M, Vertegaal ACO.

Mol Cell Proteomics. 2008 Jan;7(1):132-44. doi: 10.1074/mcp.M700173-MCP200. Epub 2007 Oct 15.

29.

A fluorescence-resonance-energy-transfer-based protease activity assay and its use to monitor paralog-specific small ubiquitin-like modifier processing.

Martin SF, Hattersley N, Samuel ID, Hay RT, Tatham MH.

Anal Biochem. 2007 Apr 1;363(1):83-90. Epub 2007 Jan 4.

PMID:
17288980
30.

SUMO protease SENP1 induces isomerization of the scissile peptide bond.

Shen L, Tatham MH, Dong C, Zagórska A, Naismith JH, Hay RT.

Nat Struct Mol Biol. 2006 Dec;13(12):1069-77. Epub 2006 Nov 12.

32.

Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection.

Tatham MH, Kim S, Jaffray E, Song J, Chen Y, Hay RT.

Nat Struct Mol Biol. 2005 Jan;12(1):67-74. Epub 2004 Dec 19.

PMID:
15608651
33.

SUMO and transcriptional regulation.

Girdwood DW, Tatham MH, Hay RT.

Semin Cell Dev Biol. 2004 Apr;15(2):201-10. Review.

PMID:
15209380
34.

Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation.

Tatham MH, Kim S, Yu B, Jaffray E, Song J, Zheng J, Rodriguez MS, Hay RT, Chen Y.

Biochemistry. 2003 Aug 26;42(33):9959-69.

PMID:
12924945
35.
36.

Identification of a substrate recognition site on Ubc9.

Lin D, Tatham MH, Yu B, Kim S, Hay RT, Chen Y.

J Biol Chem. 2002 Jun 14;277(24):21740-8. Epub 2002 Mar 4.

37.

Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9.

Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT.

J Biol Chem. 2001 Sep 21;276(38):35368-74. Epub 2001 Jul 12.

Supplemental Content

Loading ...
Support Center