Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 40

1.

Transcriptome profiling reveals male- and female-specific gene expression pattern and novel gene candidates for the control of sex determination and gonad development in Xenopus laevis.

Piprek RP, Damulewicz M, Tassan JP, Kloc M, Kubiak JZ.

Dev Genes Evol. 2019 May;229(2-3):53-72. doi: 10.1007/s00427-019-00630-y. Epub 2019 Apr 10.

2.

Tight junction-associated protein GEF-H1 in the neighbours of dividing epithelial cells is essential for adaptation of cell-cell membrane during cytokinesis.

Hatte G, Prigent C, Tassan JP.

Exp Cell Res. 2018 Oct 1;371(1):72-82. doi: 10.1016/j.yexcr.2018.07.042. Epub 2018 Jul 27.

PMID:
30056063
3.

Tight junctions negatively regulate mechanical forces applied to adherens junctions in vertebrate epithelial tissue.

Hatte G, Prigent C, Tassan JP.

J Cell Sci. 2018 Feb 5;131(3). pii: jcs208736. doi: 10.1242/jcs.208736.

4.
5.

Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo.

Tassan JP, Wühr M, Hatte G, Kubiak J.

Results Probl Cell Differ. 2017;61:243-260. doi: 10.1007/978-3-319-53150-2_11.

PMID:
28409308
6.

Actomyosin-generated tension on cadherin is similar between dividing and non-dividing epithelial cells in early Xenopus laevis embryos.

Herbomel G, Hatte G, Roul J, Padilla-Parra S, Tassan JP, Tramier M.

Sci Rep. 2017 Mar 22;7:45058. doi: 10.1038/srep45058.

7.

Role of Cdc6 During Oogenesis and Early Embryo Development in Mouse and Xenopus laevis.

Borsuk E, Jachowicz J, Kloc M, Tassan JP, Kubiak JZ.

Results Probl Cell Differ. 2017;59:201-211. doi: 10.1007/978-3-319-44820-6_7. Review.

PMID:
28247050
8.

Flexibility vs. robustness in cell cycle regulation of timing of M-phase entry in Xenopus laevis embryo cell-free extract.

Debowski M, El Dika M, Malejczyk J, Zdanowski R, Prigent C, Tassan JP, Kloc M, Lachowicz M, Kubiak JZ.

Int J Dev Biol. 2016;60(7-8-9):305-314.

9.

Stathmin involvement in the maternal embryonic leucine zipper kinase pathway in glioblastoma.

Marie SK, Oba-Shinjo SM, da Silva R, Gimenez M, Nunes Reis G, Tassan JP, Rosa JC, Uno M.

Proteome Sci. 2016 Mar 11;14:6. doi: 10.1186/s12953-016-0094-9. eCollection 2016.

10.

PAR-4 and anillin regulate myosin to coordinate spindle and furrow position during asymmetric division.

Pacquelet A, Uhart P, Tassan JP, Michaux G.

J Cell Biol. 2015 Sep 28;210(7):1085-99. doi: 10.1083/jcb.201503006.

11.

CDC6 controls dynamics of the first embryonic M-phase entry and progression via CDK1 inhibition.

El Dika M, Laskowska-Kaszub K, Koryto M, Dudka D, Prigent C, Tassan JP, Kloc M, Polanski Z, Borsuk E, Kubiak JZ.

Dev Biol. 2014 Dec 1;396(1):67-80. doi: 10.1016/j.ydbio.2014.09.023. Epub 2014 Oct 1.

12.

Epithelial cell division in the Xenopus laevis embryo during gastrulation.

Hatte G, Tramier M, Prigent C, Tassan JP.

Int J Dev Biol. 2014;58(10-12):775-81. doi: 10.1387/ijdb.140277jt.

13.

Control of timing of embryonic M-phase entry and exit is differentially sensitive to CDK1 and PP2A balance.

El Dika M, Dudka D, Prigent C, Tassan JP, Kloc M, Kubiak JZ.

Int J Dev Biol. 2014;58(10-12):767-74. doi: 10.1387/ijdb.140101jk.

14.

Cell-cycle dependent localization of MELK and its new partner RACK1 in epithelial versus mesenchyme-like cells in Xenopus embryo.

Chartrain I, Le Page Y, Hatte G, Körner R, Kubiak JZ, Tassan JP.

Biol Open. 2013 Aug 21;2(10):1037-48. doi: 10.1242/bio.20136080. eCollection 2013.

15.

Cortical localization of maternal embryonic leucine zipper kinase (MELK) implicated in cytokinesis in early xenopus embryos.

Tassan JP.

Commun Integr Biol. 2011 Jul;4(4):483-5. doi: 10.4161/cib.4.4.15669. Epub 2011 Jul 1.

16.

A functional analysis of MELK in cell division reveals a transition in the mode of cytokinesis during Xenopus development.

Le Page Y, Chartrain I, Badouel C, Tassan JP.

J Cell Sci. 2011 Mar 15;124(Pt 6):958-68. doi: 10.1242/jcs.069567.

17.

Maternal embryonic leucine zipper kinase is stabilized in mitosis by phosphorylation and is partially degraded upon mitotic exit.

Badouel C, Chartrain I, Blot J, Tassan JP.

Exp Cell Res. 2010 Aug 1;316(13):2166-73. doi: 10.1016/j.yexcr.2010.04.019. Epub 2010 Apr 24.

PMID:
20420823
18.

A mitochondrial-targeting signal is present in the non-catalytic domain of the MELK protein kinase.

Chartrain I, Blot J, Lerivray H, Guyot N, Tassan JP.

Cell Biol Int. 2007 Feb;31(2):196-201. Epub 2006 Oct 19.

PMID:
17129738
19.

M-phase MELK activity is regulated by MPF and MAPK.

Badouel C, Körner R, Frank-Vaillant M, Couturier A, Nigg EA, Tassan JP.

Cell Cycle. 2006 Apr;5(8):883-9. Epub 2006 Apr 17.

PMID:
16628004
20.

Cell-cycle-dependent cortical localization of pEg3 protein kinase in Xenopus and human cells.

Chartrain I, Couturier A, Tassan JP.

Biol Cell. 2006 Apr;98(4):253-63.

PMID:
16159311
21.

CDC25B phosphorylated by pEg3 localizes to the centrosome and the spindle poles at mitosis.

Mirey G, Chartrain I, Froment C, Quaranta M, Bouché JP, Monsarrat B, Tassan JP, Ducommun B.

Cell Cycle. 2005 Jun;4(6):806-11. Epub 2005 Jun 5.

PMID:
15908796
22.

An overview of the KIN1/PAR-1/MARK kinase family.

Tassan JP, Le Goff X.

Biol Cell. 2004 Apr;96(3):193-9. Review.

PMID:
15182702
23.

Human pEg3 kinase associates with and phosphorylates CDC25B phosphatase: a potential role for pEg3 in cell cycle regulation.

Davezac N, Baldin V, Blot J, Ducommun B, Tassan JP.

Oncogene. 2002 Oct 31;21(50):7630-41.

24.

Cell cycle regulation of pEg3, a new Xenopus protein kinase of the KIN1/PAR-1/MARK family.

Blot J, Chartrain I, Roghi C, Philippe M, Tassan JP.

Dev Biol. 2002 Jan 15;241(2):327-38.

25.

Expression of the release factor eRF1 (Sup45p) gene of higher eukaryotes in yeast and mammalian tissues.

Urbero B, Eurwilaichitr L, Stansfield I, Tassan JP, Le Goff X, Kress M, Tuite MF.

Biochimie. 1997;79(1):27-36.

PMID:
9195043
26.

Viral transactivators E1A and VP16 interact with a large complex that is associated with CTD kinase activity and contains CDK8.

Gold MO, Tassan JP, Nigg EA, Rice AP, Herrmann CH.

Nucleic Acids Res. 1996 Oct 1;24(19):3771-7.

27.

MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH.

Adamczewski JP, Rossignol M, Tassan JP, Nigg EA, Moncollin V, Egly JM.

EMBO J. 1996 Apr 15;15(8):1877-84.

28.

Drosophila Cdk8, a kinase partner of cyclin C that interacts with the large subunit of RNA polymerase II.

Leclerc V, Tassan JP, O'Farrell PH, Nigg EA, Léopold P.

Mol Biol Cell. 1996 Apr;7(4):505-13.

29.

In vitro assembly of a functional human CDK7-cyclin H complex requires MAT1, a novel 36 kDa RING finger protein.

Tassan JP, Jaquenoud M, Fry AM, Frutiger S, Hughes GJ, Nigg EA.

EMBO J. 1995 Nov 15;14(22):5608-17.

30.

MAT1 ('menage à trois') a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK.

Devault A, Martinez AM, Fesquet D, Labbé JC, Morin N, Tassan JP, Nigg EA, Cavadore JC, Dorée M.

EMBO J. 1995 Oct 16;14(20):5027-36.

31.
32.

Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C.

Tassan JP, Jaquenoud M, Léopold P, Schultz SJ, Nigg EA.

Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8871-5.

33.

Structural analysis of a MIP family protein from the digestive tract of Cicadella viridis.

Beuron F, Le Cahérec F, Guillam MT, Cavalier A, Garret A, Tassan JP, Delamarche C, Schultz P, Mallouh V, Rolland JP, et al.

J Biol Chem. 1995 Jul 21;270(29):17414-22.

34.

Both cdc2 and cdk2 promote S phase initiation in Xenopus egg extracts.

Chevalier S, Tassan JP, Cox R, Philippe M, Ford C.

J Cell Sci. 1995 May;108 ( Pt 5):1831-41.

35.

The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor.

Roy R, Adamczewski JP, Seroz T, Vermeulen W, Tassan JP, Schaeffer L, Nigg EA, Hoeijmakers JH, Egly JM.

Cell. 1994 Dec 16;79(6):1093-101.

PMID:
8001135
36.
37.

A cyclin associated with the CDK-activating kinase MO15.

Mäkelä TP, Tassan JP, Nigg EA, Frutiger S, Hughes GJ, Weinberg RA.

Nature. 1994 Sep 15;371(6494):254-7.

PMID:
8078587
38.

CII the Xenopus homologue of Saccharomyces cerevisiae SUP 45, which is encoded by a maternal RNA, is not essential for translational fidelity in egg extracts.

Tassan JP, Le Goff X, Le Guellec R, Philippe M.

Biochem Soc Trans. 1993 Nov;21(4):862-7. No abstract available.

PMID:
8132082
39.

Supplemental Content

Loading ...
Support Center