Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 61

1.

Modifications of Sarcoplasmic Reticulum Function Prevent Progression of Sarcomere-Linked Hypertrophic Cardiomyopathy Despite a Persistent Increase in Myofilament Calcium Response.

Chowdhury SAK, Warren CM, Simon JN, Ryba DM, Batra A, Varga P, Kranias EG, Tardiff JC, Solaro RJ, Wolska BM.

Front Physiol. 2020 Mar 10;11:107. doi: 10.3389/fphys.2020.00107. eCollection 2020.

2.

Differences in microRNA-29 and Pro-fibrotic Gene Expression in Mouse and Human Hypertrophic Cardiomyopathy.

Liu Y, Afzal J, Vakrou S, Greenland GV, Talbot CC Jr, Hebl VB, Guan Y, Karmali R, Tardiff JC, Leinwand LA, Olgin JE, Das S, Fukunaga R, Abraham MR.

Front Cardiovasc Med. 2019 Dec 17;6:170. doi: 10.3389/fcvm.2019.00170. eCollection 2019.

3.

FRET-based analysis of the cardiac troponin T linker region reveals the structural basis of the hypertrophic cardiomyopathy-causing Δ160E mutation.

Abdullah S, Lynn ML, McConnell MT, Klass MM, Baldo AP, Schwartz SD, Tardiff JC.

J Biol Chem. 2019 Oct 4;294(40):14634-14647. doi: 10.1074/jbc.RA118.005098. Epub 2019 Aug 6.

PMID:
31387947
4.

Proof of Principle that Molecular Modeling Followed by a Biophysical Experiment Can Develop Small Molecules that Restore Function to the Cardiac Thin Filament in the Presence of Cardiomyopathic Mutations.

Szatkowski L, Lynn ML, Holeman T, Williams MR, Baldo AP, Tardiff JC, Schwartz SD.

ACS Omega. 2019 Apr 30;4(4):6492-6501. doi: 10.1021/acsomega.8b03340. Epub 2019 Apr 9.

5.

Moving beyond simple answers to complex disorders in sarcomeric cardiomyopathies: the role of integrated systems.

Deranek AE, Klass MM, Tardiff JC.

Pflugers Arch. 2019 May;471(5):661-671. doi: 10.1007/s00424-019-02269-0. Epub 2019 Mar 8. Review.

PMID:
30848350
6.

Chronic Calmodulin-Kinase II Activation Drives Disease Progression in Mutation-Specific Hypertrophic Cardiomyopathy.

Lehman SJ, Tal-Grinspan L, Lynn ML, Strom J, Benitez GE, Anderson ME, Tardiff JC.

Circulation. 2019 Mar 19;139(12):1517-1529. doi: 10.1161/CIRCULATIONAHA.118.034549.

7.

Mechanism of Cardiac Tropomyosin Transitions on Filamentous Actin As Revealed by All-Atom Steered Molecular Dynamics Simulations.

Williams MR, Tardiff JC, Schwartz SD.

J Phys Chem Lett. 2018 Jun 21;9(12):3301-3306. doi: 10.1021/acs.jpclett.8b00958. Epub 2018 Jun 5.

8.

Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models.

Vakrou S, Fukunaga R, Foster DB, Sorensen L, Liu Y, Guan Y, Woldemichael K, Pineda-Reyes R, Liu T, Tardiff JC, Leinwand LA, Tocchetti CG, Abraham TP, O'Rourke B, Aon MA, Abraham MR.

JCI Insight. 2018 Mar 22;3(6). pii: 94493. doi: 10.1172/jci.insight.94493.

9.

Biophysical Derangements in Genetic Cardiomyopathies.

Lynn ML, Lehman SJ, Tardiff JC.

Heart Fail Clin. 2018 Apr;14(2):147-159. doi: 10.1016/j.hfc.2017.12.002. Review.

10.

Pathogenesis of Hypertrophic Cardiomyopathy is Mutation Rather Than Disease Specific: A Comparison of the Cardiac Troponin T E163R and R92Q Mouse Models.

Ferrantini C, Coppini R, Pioner JM, Gentile F, Tosi B, Mazzoni L, Scellini B, Piroddi N, Laurino A, Santini L, Spinelli V, Sacconi L, De Tombe P, Moore R, Tardiff J, Mugelli A, Olivotto I, Cerbai E, Tesi C, Poggesi C.

J Am Heart Assoc. 2017 Jul 22;6(7). pii: e005407. doi: 10.1161/JAHA.116.005407.

11.

Clinically Divergent Mutation Effects on the Structure and Function of the Human Cardiac Tropomyosin Overlap.

McConnell M, Tal Grinspan L, Williams MR, Lynn ML, Schwartz BA, Fass OZ, Schwartz SD, Tardiff JC.

Biochemistry. 2017 Jul 5;56(26):3403-3413. doi: 10.1021/acs.biochem.7b00266. Epub 2017 Jun 21.

12.

The structural basis of alpha-tropomyosin linked (Asp230Asn) familial dilated cardiomyopathy.

Lynn ML, Tal Grinspan L, Holeman TA, Jimenez J, Strom J, Tardiff JC.

J Mol Cell Cardiol. 2017 Jul;108:127-137. doi: 10.1016/j.yjmcc.2017.06.001. Epub 2017 Jun 7.

13.

Ranolazine Prevents Phenotype Development in a Mouse Model of Hypertrophic Cardiomyopathy.

Coppini R, Mazzoni L, Ferrantini C, Gentile F, Pioner JM, Laurino A, Santini L, Bargelli V, Rotellini M, Bartolucci G, Crocini C, Sacconi L, Tesi C, Belardinelli L, Tardiff J, Mugelli A, Olivotto I, Cerbai E, Poggesi C.

Circ Heart Fail. 2017 Mar;10(3). pii: e003565. doi: 10.1161/CIRCHEARTFAILURE.116.003565.

14.

Assessing the Phenotypic Burden of Preclinical Sarcomeric Hypertrophic Cardiomyopathy-New Assessments to Guide Diagnosis and Management.

Tardiff JC.

JAMA Cardiol. 2017 Apr 1;2(4):428-429. doi: 10.1001/jamacardio.2016.5677. No abstract available.

PMID:
28241236
15.

The Role of Calcium/Calmodulin-Dependent Protein Kinase II Activation in Hypertrophic Cardiomyopathy.

Tardiff JC.

Circulation. 2016 Nov 29;134(22):1749-1751. No abstract available.

16.

In Vivo Cannulation Methods for Cardiomyocytes Isolation from Heart Disease Models.

Jian Z, Chen YJ, Shimkunas R, Jian Y, Jaradeh M, Chavez K, Chiamvimonvat N, Tardiff JC, Izu LT, Ross RS, Chen-Izu Y.

PLoS One. 2016 Aug 8;11(8):e0160605. doi: 10.1371/journal.pone.0160605. eCollection 2016.

17.

Liver Kinase B1 complex acts as a novel modifier of myofilament function and localizes to the Z-disk in cardiac myocytes.

Behunin SM, Lopez-Pier MA, Mayfield RM, Danilo CA, Lipovka Y, Birch C, Lehman S, Tardiff JC, Gregorio CC, Konhilas JP.

Arch Biochem Biophys. 2016 Jul 1;601:32-41. doi: 10.1016/j.abb.2016.03.012. Epub 2016 Mar 10.

18.

Atomic resolution probe for allostery in the regulatory thin filament.

Williams MR, Lehman SJ, Tardiff JC, Schwartz SD.

Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3257-62. doi: 10.1073/pnas.1519541113. Epub 2016 Mar 8.

19.

Novel insights on the relationship between T-tubular defects and contractile dysfunction in a mouse model of hypertrophic cardiomyopathy.

Crocini C, Ferrantini C, Scardigli M, Coppini R, Mazzoni L, Lazzeri E, Pioner JM, Scellini B, Guo A, Song LS, Yan P, Loew LM, Tardiff J, Tesi C, Vanzi F, Cerbai E, Pavone FS, Sacconi L, Poggesi C.

J Mol Cell Cardiol. 2016 Feb;91:42-51. doi: 10.1016/j.yjmcc.2015.12.013. Epub 2015 Dec 20.

20.

Intrauterine Treatment of a Fetus with Familial Hypertrophic Cardiomyopathy Secondary to MYH7 Mutation.

Hill MG, Sekhon MK, Reed KL, Anderson CF, Borjon ND, Tardiff JC, Barber BJ.

Pediatr Cardiol. 2015 Dec;36(8):1774-7. doi: 10.1007/s00246-015-1250-1. Epub 2015 Sep 4.

21.

Synergistic role of ADP and Ca(2+) in diastolic myocardial stiffness.

Sequeira V, Najafi A, McConnell M, Fowler ED, Bollen IA, Wüst RC, dos Remedios C, Helmes M, White E, Stienen GJ, Tardiff J, Kuster DW, van der Velden J.

J Physiol. 2015 Sep 1;593(17):3899-916. doi: 10.1113/JP270354. Epub 2015 Jul 14.

22.

The functional effect of dilated cardiomyopathy mutation (R144W) in mouse cardiac troponin T is differently affected by α- and β-myosin heavy chain isoforms.

Gollapudi SK, Tardiff JC, Chandra M.

Am J Physiol Heart Circ Physiol. 2015 Apr 15;308(8):H884-93. doi: 10.1152/ajpheart.00528.2014. Epub 2015 Feb 13.

23.

Targets for therapy in sarcomeric cardiomyopathies.

Tardiff JC, Carrier L, Bers DM, Poggesi C, Ferrantini C, Coppini R, Maier LS, Ashrafian H, Huke S, van der Velden J.

Cardiovasc Res. 2015 Apr 1;105(4):457-70. doi: 10.1093/cvr/cvv023. Epub 2015 Jan 29. Review.

24.

Research priorities in sarcomeric cardiomyopathies.

van der Velden J, Ho CY, Tardiff JC, Olivotto I, Knollmann BC, Carrier L.

Cardiovasc Res. 2015 Apr 1;105(4):449-56. doi: 10.1093/cvr/cvv019. Epub 2015 Jan 28. Review.

25.

Animal and in silico models for the study of sarcomeric cardiomyopathies.

Duncker DJ, Bakkers J, Brundel BJ, Robbins J, Tardiff JC, Carrier L.

Cardiovasc Res. 2015 Apr 1;105(4):439-48. doi: 10.1093/cvr/cvv006. Epub 2015 Jan 18. Review.

26.

Clinical phenotype and outcome of hypertrophic cardiomyopathy associated with thin-filament gene mutations.

Coppini R, Ho CY, Ashley E, Day S, Ferrantini C, Girolami F, Tomberli B, Bardi S, Torricelli F, Cecchi F, Mugelli A, Poggesi C, Tardiff J, Olivotto I.

J Am Coll Cardiol. 2014 Dec 23;64(24):2589-2600. doi: 10.1016/j.jacc.2014.09.059.

27.

Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling.

Jian Z, Han H, Zhang T, Puglisi J, Izu LT, Shaw JA, Onofiok E, Erickson JR, Chen YJ, Horvath B, Shimkunas R, Xiao W, Li Y, Pan T, Chan J, Banyasz T, Tardiff JC, Chiamvimonvat N, Bers DM, Lam KS, Chen-Izu Y.

Sci Signal. 2014 Mar 18;7(317):ra27. doi: 10.1126/scisignal.2005046.

28.

Allosteric effects of cardiac troponin TNT1 mutations on actomyosin binding: a novel pathogenic mechanism for hypertrophic cardiomyopathy.

Moore RK, Abdullah S, Tardiff JC.

Arch Biochem Biophys. 2014 Jun 15;552-553:21-8. doi: 10.1016/j.abb.2014.01.016. Epub 2014 Jan 28.

29.

HCM-linked ∆160E cardiac troponin T mutation causes unique progressive structural and molecular ventricular remodeling in transgenic mice.

Moore RK, Grinspan LT, Jimenez J, Guinto PJ, Ertz-Berger B, Tardiff JC.

J Mol Cell Cardiol. 2013 May;58:188-98. doi: 10.1016/j.yjmcc.2013.02.004. Epub 2013 Feb 19.

30.

It's never too early to look: subclinical disease in sarcomeric dilated cardiomyopathy.

Tardiff JC.

Circ Cardiovasc Genet. 2012 Oct 1;5(5):483-6. doi: 10.1161/CIRCGENETICS.112.964817. No abstract available.

31.

Myosin-driven rescue of contractile reserve and energetics in mouse hearts bearing familial hypertrophic cardiomyopathy-associated mutant troponin T is mutation-specific.

He H, Hoyer K, Tao H, Rice R, Jimenez J, Tardiff JC, Ingwall JS.

J Physiol. 2012 Nov 1;590(21):5371-88. doi: 10.1113/jphysiol.2012.234252. Epub 2012 Aug 20.

32.

Effects of R92 mutations in mouse cardiac troponin T are influenced by changes in myosin heavy chain isoform.

Ford SJ, Mamidi R, Jimenez J, Tardiff JC, Chandra M.

J Mol Cell Cardiol. 2012 Oct;53(4):542-51. doi: 10.1016/j.yjmcc.2012.07.018. Epub 2012 Aug 4.

33.

Mutations in the sensitive giant titin result in a broken heart.

Leinwand LA, Tardiff JC, Gregorio CC.

Circ Res. 2012 Jul 6;111(2):158-61. doi: 10.1161/RES.0b013e3182635ca2. No abstract available.

PMID:
22773424
34.

Molecular effects of familial hypertrophic cardiomyopathy-related mutations in the TNT1 domain of cTnT.

Manning EP, Tardiff JC, Schwartz SD.

J Mol Biol. 2012 Aug 3;421(1):54-66. doi: 10.1016/j.jmb.2012.05.008. Epub 2012 May 10.

35.

Correlation of molecular and functional effects of mutations in cardiac troponin T linked to familial hypertrophic cardiomyopathy: an integrative in silico/in vitro approach.

Manning EP, Guinto PJ, Tardiff JC.

J Biol Chem. 2012 Apr 27;287(18):14515-23. doi: 10.1074/jbc.M111.257436. Epub 2012 Feb 13.

36.

A model of calcium activation of the cardiac thin filament.

Manning EP, Tardiff JC, Schwartz SD.

Biochemistry. 2011 Aug 30;50(34):7405-13. doi: 10.1021/bi200506k. Epub 2011 Aug 5.

37.

Thin filament mutations: developing an integrative approach to a complex disorder.

Tardiff JC.

Circ Res. 2011 Mar 18;108(6):765-82. doi: 10.1161/CIRCRESAHA.110.224170. Review.

38.

Abnormal heart rate regulation in murine hearts with familial hypertrophic cardiomyopathy-related cardiac troponin T mutations.

Jimenez J, Tardiff JC.

Am J Physiol Heart Circ Physiol. 2011 Feb;300(2):H627-35. doi: 10.1152/ajpheart.00247.2010. Epub 2010 Dec 3.

39.

Tropomyosin and dilated cardiomyopathy: revenge of the actinomyosin "gatekeeper".

Tardiff JC.

J Am Coll Cardiol. 2010 Jan 26;55(4):330-2. doi: 10.1016/j.jacc.2009.11.018. No abstract available.

40.

Cardiac myosin heavy chain isoform exchange alters the phenotype of cTnT-related cardiomyopathies in mouse hearts.

Rice R, Guinto P, Dowell-Martino C, He H, Hoyer K, Krenz M, Robbins J, Ingwall JS, Tardiff JC.

J Mol Cell Cardiol. 2010 May;48(5):979-88. doi: 10.1016/j.yjmcc.2009.11.018. Epub 2009 Dec 31.

41.

Temporal and mutation-specific alterations in Ca2+ homeostasis differentially determine the progression of cTnT-related cardiomyopathies in murine models.

Guinto PJ, Haim TE, Dowell-Martino CC, Sibinga N, Tardiff JC.

Am J Physiol Heart Circ Physiol. 2009 Aug;297(2):H614-26. doi: 10.1152/ajpheart.01143.2008. Epub 2009 Jun 5.

42.

Selenium status and antibodies to selected pathogens in white-tailed deer (Odocoileus virginianus) in Southern Minnesota.

Wolf KN, DePerno CS, Jenks JA, Stoskopf MK, Kennedy-Stoskopf S, Swanson CC, Brinkman TJ, Osborn RG, Tardiff JA.

J Wildl Dis. 2008 Jan;44(1):181-7.

PMID:
18263838
43.

Computational Characterization of Mutations in Cardiac Troponin T Known to Cause Familial Hypertrophic Cardiomyopathy.

Guinto PJ, Manning EP, Schwartz SD, Tardiff JC.

J Theor Comput Chem. 2007 Sep;6(3):413.

44.

R-92L and R-92W mutations in cardiac troponin T lead to distinct energetic phenotypes in intact mouse hearts.

He H, Javadpour MM, Latif F, Tardiff JC, Ingwall JS.

Biophys J. 2007 Sep 1;93(5):1834-44. Epub 2007 May 25.

45.

Independent FHC-related cardiac troponin T mutations exhibit specific alterations in myocellular contractility and calcium kinetics.

Haim TE, Dowell C, Diamanti T, Scheuer J, Tardiff JC.

J Mol Cell Cardiol. 2007 Jun;42(6):1098-110. Epub 2007 Mar 31.

PMID:
17490679
46.

Cardiac hypertrophy: stressing out the heart.

Tardiff JC.

J Clin Invest. 2006 Jun;116(6):1467-70.

48.

Changes in the chemical and dynamic properties of cardiac troponin T cause discrete cardiomyopathies in transgenic mice.

Ertz-Berger BR, He H, Dowell C, Factor SM, Haim TE, Nunez S, Schwartz SD, Ingwall JS, Tardiff JC.

Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18219-24. Epub 2005 Dec 2.

49.

Increase in tension-dependent ATP consumption induced by cardiac troponin T mutation.

Chandra M, Tschirgi ML, Tardiff JC.

Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H2112-9. Epub 2005 Jul 1.

50.

Myosin at the heart of the problem.

Tardiff JC.

N Engl J Med. 2004 Jul 29;351(5):424-6. No abstract available.

PMID:
15282349

Supplemental Content

Loading ...
Support Center