Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 25

1.

A Non-Invasive Method Based on Computer Vision for Grapevine Cluster Compactness Assessment Using a Mobile Sensing Platform under Field Conditions.

Palacios F, Diago MP, Tardaguila J.

Sensors (Basel). 2019 Sep 2;19(17). pii: E3799. doi: 10.3390/s19173799.

2.

On-The-Go VIS + SW - NIR Spectroscopy as a Reliable Monitoring Tool for Grape Composition within the Vineyard.

Fernández-Novales J, Tardáguila J, Gutiérrez S, Paz Diago M.

Molecules. 2019 Jul 31;24(15). pii: E2795. doi: 10.3390/molecules24152795.

3.

Assessment of amino acids and total soluble solids in intact grape berries using contactless Vis and NIR spectroscopy during ripening.

Fernández-Novales J, Garde-Cerdán T, Tardáguila J, Gutiérrez-Gamboa G, Pérez-Álvarez EP, Diago MP.

Talanta. 2019 Jul 1;199:244-253. doi: 10.1016/j.talanta.2019.02.037. Epub 2019 Feb 8.

PMID:
30952253
4.

On-The-Go Hyperspectral Imaging Under Field Conditions and Machine Learning for the Classification of Grapevine Varieties.

Gutiérrez S, Fernández-Novales J, Diago MP, Tardaguila J.

Front Plant Sci. 2018 Jul 25;9:1102. doi: 10.3389/fpls.2018.01102. eCollection 2018.

5.

Effects of soil erosion on agro-ecosystem services and soil functions: A multidisciplinary study in nineteen organically farmed European and Turkish vineyards.

Costantini EAC, Castaldini M, Diago MP, Giffard B, Lagomarsino A, Schroers HJ, Priori S, Valboa G, Agnelli AE, Akça E, D'Avino L, Fulchin E, Gagnarli E, Kiraz ME, Knapič M, Pelengić R, Pellegrini S, Perria R, Puccioni S, Simoni S, Tangolar S, Tardaguila J, Vignozzi N, Zombardo A.

J Environ Manage. 2018 Oct 1;223:614-624. doi: 10.1016/j.jenvman.2018.06.065. Epub 2018 Jun 30.

PMID:
29975888
6.

Geographical and Cultivar Features Differentiate Grape Microbiota in Northern Italy and Spain Vineyards.

Mezzasalma V, Sandionigi A, Guzzetti L, Galimberti A, Grando MS, Tardaguila J, Labra M.

Front Microbiol. 2018 May 15;9:946. doi: 10.3389/fmicb.2018.00946. eCollection 2018.

7.

Development and Validation of a New Methodology to Assess the Vineyard Water Status by On-the-Go Near Infrared Spectroscopy.

Diago MP, Fernández-Novales J, Gutiérrez S, Marañón M, Tardaguila J.

Front Plant Sci. 2018 Jan 30;9:59. doi: 10.3389/fpls.2018.00059. eCollection 2018.

8.

Vineyard water status assessment using on-the-go thermal imaging and machine learning.

Gutiérrez S, Diago MP, Fernández-Novales J, Tardaguila J.

PLoS One. 2018 Feb 1;13(2):e0192037. doi: 10.1371/journal.pone.0192037. eCollection 2018.

9.

Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer.

Tardaguila J, Fernández-Novales J, Gutiérrez S, Diago MP.

J Sci Food Agric. 2017 Aug;97(11):3772-3780. doi: 10.1002/jsfa.8241. Epub 2017 Feb 24.

PMID:
28133743
10.

Use of Visible and Short-Wave Near-Infrared Hyperspectral Imaging To Fingerprint Anthocyanins in Intact Grape Berries.

Diago MP, Fernández-Novales J, Fernandes AM, Melo-Pinto P, Tardaguila J.

J Agric Food Chem. 2016 Oct 12;64(40):7658-7666. Epub 2016 Sep 30.

PMID:
27653674
11.

Image analysis-based modelling for flower number estimation in grapevine.

Millan B, Aquino A, Diago MP, Tardaguila J.

J Sci Food Agric. 2017 Feb;97(3):784-792. doi: 10.1002/jsfa.7797. Epub 2016 Jun 7.

PMID:
27173452
12.

Application of 2D and 3D image technologies to characterise morphological attributes of grapevine clusters.

Tello J, Cubero S, Blasco J, Tardaguila J, Aleixos N, Ibáñez J.

J Sci Food Agric. 2016 Oct;96(13):4575-83. doi: 10.1002/jsfa.7675. Epub 2016 Mar 23.

PMID:
26910811
13.

Data Mining and NIR Spectroscopy in Viticulture: Applications for Plant Phenotyping under Field Conditions.

Gutiérrez S, Tardaguila J, Fernández-Novales J, Diago MP.

Sensors (Basel). 2016 Feb 16;16(2):236. doi: 10.3390/s16020236.

14.

Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer.

Gutiérrez S, Tardaguila J, Fernández-Novales J, Diago MP.

PLoS One. 2015 Nov 24;10(11):e0143197. doi: 10.1371/journal.pone.0143197. eCollection 2015.

15.

Estimation of total soluble solids in grape berries using a hand-held NIR spectrometer under field conditions.

Urraca R, Sanz-Garcia A, Tardaguila J, Diago MP.

J Sci Food Agric. 2016 Jul;96(9):3007-16. doi: 10.1002/jsfa.7470. Epub 2015 Oct 23.

PMID:
26399449
16.
17.

Assessment of cluster yield components by image analysis.

Diago MP, Tardaguila J, Aleixos N, Millan B, Prats-Montalban JM, Cubero S, Blasco J.

J Sci Food Agric. 2015 Apr;95(6):1274-82. doi: 10.1002/jsfa.6819. Epub 2014 Aug 12.

PMID:
25041796
18.

Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses.

Carbonell-Bejerano P, Diago MP, Martínez-Abaigar J, Martínez-Zapater JM, Tardáguila J, Núñez-Olivera E.

BMC Plant Biol. 2014 Jul 9;14:183. doi: 10.1186/1471-2229-14-183.

19.

Effects of UV exclusion on the physiology and phenolic composition of leaves and berries of Vitis vinifera cv. Graciano.

Del-Castillo-Alonso MÁ, Diago MP, Monforte L, Tardaguila J, Martínez-Abaigar J, Núñez-Olivera E.

J Sci Food Agric. 2015 Jan;95(2):409-16. doi: 10.1002/jsfa.6738. Epub 2014 Jun 10.

PMID:
24820651
20.

Assessment of flower number per inflorescence in grapevine by image analysis under field conditions.

Diago MP, Sanz-Garcia A, Millan B, Blasco J, Tardaguila J.

J Sci Food Agric. 2014 Aug;94(10):1981-7. doi: 10.1002/jsfa.6512. Epub 2014 Jan 7.

PMID:
24302287
21.

Using an automatic resistivity profiler soil sensor on-the-go in precision viticulture.

Rossi R, Pollice A, Diago MP, Oliveira M, Millan B, Bitella G, Amato M, Tardaguila J.

Sensors (Basel). 2013 Jan 16;13(1):1121-36. doi: 10.3390/s130101121.

22.

Grapevine yield and leaf area estimation using supervised classification methodology on RGB images taken under field conditions.

Diago MP, Correa C, Millán B, Barreiro P, Valero C, Tardaguila J.

Sensors (Basel). 2012 Dec 12;12(12):16988-7006. doi: 10.3390/s121216988.

23.

Early leaf removal impact on volatile composition of Tempranillo wines.

Vilanova M, Diago MP, Genisheva Z, Oliveira JM, Tardaguila J.

J Sci Food Agric. 2012 Mar 15;92(4):935-42. doi: 10.1002/jsfa.4673. Epub 2011 Oct 3.

PMID:
21968739
24.

Phenolic composition of Tempranillo wines following early defoliation of the vines.

Diago MP, Ayestarán B, Guadalupe Z, Garrido Á, Tardaguila J.

J Sci Food Agric. 2012 Mar 15;92(4):925-34. doi: 10.1002/jsfa.4671. Epub 2011 Oct 3.

PMID:
21968704
25.

Effects of selective and complete dry therapy on prevalence of intramammary infection and on milk yield in the subsequent lactation in dairy ewes.

Gonzalo C, Tardáguila JA, De La Fuente LF, San Primitivo F.

J Dairy Res. 2004 Feb;71(1):33-8.

PMID:
15068064

Supplemental Content

Loading ...
Support Center