Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 35

1.

Beyond piperacillin-tazobactam: cefepime and AAI101 as a potent β-lactam-β-lactamase inhibitor combination.

Papp-Wallace KM, Bethel CR, Caillon J, Barnes MD, Potel G, Bajaksouzian S, Rutter JD, Reghal A, Shapiro S, Taracila MA, Jacobs MR, Bonomo RA, Jacqueline C.

Antimicrob Agents Chemother. 2019 Mar 11. pii: AAC.00105-19. doi: 10.1128/AAC.00105-19. [Epub ahead of print]

PMID:
30858223
2.

"Resurrecting old β-lactams": the potent inhibitory activity of temocillin against multi-drug resistant Burkholderia spp. isolates from the United States.

Zeiser ET, Becka SA, Barnes MD, Taracila MA, LiPuma JJ, Papp-Wallace KM.

Antimicrob Agents Chemother. 2019 Feb 4. pii: AAC.02315-18. doi: 10.1128/AAC.02315-18. [Epub ahead of print]

PMID:
30718248
3.

Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in Pseudomonas aeruginosa.

Barnes MD, Taracila MA, Rutter JD, Bethel CR, Galdadas I, Hujer AM, Caselli E, Prati F, Dekker JP, Papp-Wallace KM, Haider S, Bonomo RA.

MBio. 2018 Dec 11;9(6). pii: e02085-18. doi: 10.1128/mBio.02085-18.

4.

The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop.

Palacios AR, Mojica MF, Giannini E, Taracila MA, Bethel CR, Alzari PM, Otero LH, Klinke S, Llarrull LI, Bonomo RA, Vila AJ.

Antimicrob Agents Chemother. 2018 Dec 21;63(1). pii: e01754-18. doi: 10.1128/AAC.01754-18. Print 2019 Jan.

PMID:
30348667
5.

Characterization of the AmpC β-Lactamase from Burkholderia multivorans.

Becka SA, Zeiser ET, Barnes MD, Taracila MA, Nguyen K, Singh I, Sutton GG, LiPuma JJ, Fouts DE, Papp-Wallace KM.

Antimicrob Agents Chemother. 2018 Sep 24;62(10). pii: e01140-18. doi: 10.1128/AAC.01140-18. Print 2018 Oct.

PMID:
30012762
6.

Relebactam Is a Potent Inhibitor of the KPC-2 β-Lactamase and Restores Imipenem Susceptibility in KPC-Producing Enterobacteriaceae.

Papp-Wallace KM, Barnes MD, Alsop J, Taracila MA, Bethel CR, Becka SA, van Duin D, Kreiswirth BN, Kaye KS, Bonomo RA.

Antimicrob Agents Chemother. 2018 May 25;62(6). pii: e00174-18. doi: 10.1128/AAC.00174-18. Print 2018 Jun.

7.

Multiple substitutions lead to increased loop flexibility and expanded specificity in Acinetobacter baumannii carbapenemase OXA-239.

Harper TM, June CM, Taracila MA, Bonomo RA, Powers RA, Leonard DA.

Biochem J. 2018 Jan 11;475(1):273-288. doi: 10.1042/BCJ20170702.

8.

Inhibition of Acinetobacter-Derived Cephalosporinase: Exploring the Carboxylate Recognition Site Using Novel β-Lactamase Inhibitors.

Caselli E, Romagnoli C, Powers RA, Taracila MA, Bouza AA, Swanson HC, Smolen KA, Fini F, Wallar BJ, Bonomo RA, Prati F.

ACS Infect Dis. 2018 Mar 9;4(3):337-348. doi: 10.1021/acsinfecdis.7b00153. Epub 2017 Dec 8.

9.

Structure-Based Analysis of Boronic Acids as Inhibitors of Acinetobacter-Derived Cephalosporinase-7, a Unique Class C β-Lactamase.

Bouza AA, Swanson HC, Smolen KA, VanDine AL, Taracila MA, Romagnoli C, Caselli E, Prati F, Bonomo RA, Powers RA, Wallar BJ.

ACS Infect Dis. 2018 Mar 9;4(3):325-336. doi: 10.1021/acsinfecdis.7b00152. Epub 2017 Dec 8.

10.

Klebsiella pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering.

Barnes MD, Winkler ML, Taracila MA, Page MG, Desarbre E, Kreiswirth BN, Shields RK, Nguyen MH, Clancy C, Spellberg B, Papp-Wallace KM, Bonomo RA.

MBio. 2017 Oct 31;8(5). pii: e00528-17. doi: 10.1128/mBio.00528-17.

11.

Avibactam Restores the Susceptibility of Clinical Isolates of Stenotrophomonas maltophilia to Aztreonam.

Mojica MF, Papp-Wallace KM, Taracila MA, Barnes MD, Rutter JD, Jacobs MR, LiPuma JJ, Walsh TJ, Vila AJ, Bonomo RA.

Antimicrob Agents Chemother. 2017 Sep 22;61(10). pii: e00777-17. doi: 10.1128/AAC.00777-17. Print 2017 Oct.

12.

Exploring the Landscape of Diazabicyclooctane (DBO) Inhibition: Avibactam Inactivation of PER-2 β-Lactamase.

Ruggiero M, Papp-Wallace KM, Taracila MA, Mojica MF, Bethel CR, Rudin SD, Zeiser ET, Gutkind G, Bonomo RA, Power P.

Antimicrob Agents Chemother. 2017 May 24;61(6). pii: e02476-16. doi: 10.1128/AAC.02476-16. Print 2017 Jun.

13.

Exploring the potential of boronic acids as inhibitors of OXA-24/40 β-lactamase.

Werner JP, Mitchell JM, Taracila MA, Bonomo RA, Powers RA.

Protein Sci. 2017 Mar;26(3):515-526. doi: 10.1002/pro.3100. Epub 2017 Feb 23.

14.

Exploring the Role of the Ω-Loop in the Evolution of Ceftazidime Resistance in the PenA β-Lactamase from Burkholderia multivorans, an Important Cystic Fibrosis Pathogen.

Papp-Wallace KM, Becka SA, Taracila MA, Zeiser ET, Gatta JA, LiPuma JJ, Bonomo RA.

Antimicrob Agents Chemother. 2017 Jan 24;61(2). pii: e01941-16. doi: 10.1128/AAC.01941-16. Print 2017 Feb.

15.

Boronic Acid Transition State Inhibitors Active against KPC and Other Class A β-Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design.

Rojas LJ, Taracila MA, Papp-Wallace KM, Bethel CR, Caselli E, Romagnoli C, Winkler ML, Spellberg B, Prati F, Bonomo RA.

Antimicrob Agents Chemother. 2016 Jan 4;60(3):1751-9. doi: 10.1128/AAC.02641-15.

16.

Exposing a β-Lactamase "Twist": the Mechanistic Basis for the High Level of Ceftazidime Resistance in the C69F Variant of the Burkholderia pseudomallei PenI β-Lactamase.

Papp-Wallace KM, Becka SA, Taracila MA, Winkler ML, Gatta JA, Rholl DA, Schweizer HP, Bonomo RA.

Antimicrob Agents Chemother. 2015 Nov 23;60(2):777-88. doi: 10.1128/AAC.02073-15. Print 2016 Feb.

17.

Click Chemistry in Lead Optimization of Boronic Acids as β-Lactamase Inhibitors.

Caselli E, Romagnoli C, Vahabi R, Taracila MA, Bonomo RA, Prati F.

J Med Chem. 2015 Jul 23;58(14):5445-58. doi: 10.1021/acs.jmedchem.5b00341. Epub 2015 Jul 10.

18.

Exploring the Role of Residue 228 in Substrate and Inhibitor Recognition by VIM Metallo-β-lactamases.

Mojica MF, Mahler SG, Bethel CR, Taracila MA, Kosmopoulou M, Papp-Wallace KM, Llarrull LI, Wilson BM, Marshall SH, Wallace CJ, Villegas MV, Harris ME, Vila AJ, Spencer J, Bonomo RA.

Biochemistry. 2015 May 26;54(20):3183-96. doi: 10.1021/acs.biochem.5b00106. Epub 2015 May 12.

19.

Structural basis of activity against aztreonam and extended spectrum cephalosporins for two carbapenem-hydrolyzing class D β-lactamases from Acinetobacter baumannii.

Mitchell JM, Clasman JR, June CM, Kaitany KC, LaFleur JR, Taracila MA, Klinger NV, Bonomo RA, Wymore T, Szarecka A, Powers RA, Leonard DA.

Biochemistry. 2015 Mar 17;54(10):1976-87. doi: 10.1021/bi501547k. Epub 2015 Mar 2.

20.

Avibactam and inhibitor-resistant SHV β-lactamases.

Winkler ML, Papp-Wallace KM, Taracila MA, Bonomo RA.

Antimicrob Agents Chemother. 2015 Jul;59(7):3700-9. doi: 10.1128/AAC.04405-14. Epub 2015 Feb 17.

21.

Variants of β-lactamase KPC-2 that are resistant to inhibition by avibactam.

Papp-Wallace KM, Winkler ML, Taracila MA, Bonomo RA.

Antimicrob Agents Chemother. 2015 Jul;59(7):3710-7. doi: 10.1128/AAC.04406-14. Epub 2015 Feb 9.

22.

Effect of asparagine substitutions in the YXN loop of a class C β-lactamase of Acinetobacter baumannii on substrate and inhibitor kinetics.

Skalweit MJ, Li M, Taracila MA.

Antimicrob Agents Chemother. 2015 Mar;59(3):1472-7. doi: 10.1128/AAC.03537-14. Epub 2014 Dec 22.

23.

Biochemical and structural analysis of inhibitors targeting the ADC-7 cephalosporinase of Acinetobacter baumannii.

Powers RA, Swanson HC, Taracila MA, Florek NW, Romagnoli C, Caselli E, Prati F, Bonomo RA, Wallar BJ.

Biochemistry. 2014 Dec 9;53(48):7670-9. doi: 10.1021/bi500887n. Epub 2014 Nov 25.

24.

Reclaiming the efficacy of β-lactam-β-lactamase inhibitor combinations: avibactam restores the susceptibility of CMY-2-producing Escherichia coli to ceftazidime.

Papp-Wallace KM, Winkler ML, Gatta JA, Taracila MA, Chilakala S, Xu Y, Johnson JK, Bonomo RA.

Antimicrob Agents Chemother. 2014 Aug;58(8):4290-7. doi: 10.1128/AAC.02625-14. Epub 2014 May 12.

25.

A kinetic analysis of the inhibition of FOX-4 β-lactamase, a plasmid-mediated AmpC cephalosporinase, by monocyclic β-lactams and carbapenems.

Papp-Wallace KM, Mallo S, Bethel CR, Taracila MA, Hujer AM, Fernández A, Gatta JA, Smith KM, Xu Y, Page MG, Desarbre E, Bou G, Bonomo RA.

J Antimicrob Chemother. 2014 Mar;69(3):682-90. doi: 10.1093/jac/dkt434. Epub 2013 Nov 13.

26.

Insights into β-lactamases from Burkholderia species, two phylogenetically related yet distinct resistance determinants.

Papp-Wallace KM, Taracila MA, Gatta JA, Ohuchi N, Bonomo RA, Nukaga M.

J Biol Chem. 2013 Jun 28;288(26):19090-102. doi: 10.1074/jbc.M113.458315. Epub 2013 May 8.

27.

N152G, -S, and -T substitutions in CMY-2 β-lactamase increase catalytic efficiency for cefoxitin and inactivation rates for tazobactam.

Skalweit MJ, Li M, Conklin BC, Taracila MA, Hutton RA.

Antimicrob Agents Chemother. 2013 Apr;57(4):1596-602. doi: 10.1128/AAC.01334-12. Epub 2013 Jan 14.

28.

Design and exploration of novel boronic acid inhibitors reveals important interactions with a clavulanic acid-resistant sulfhydryl-variable (SHV) β-lactamase.

Winkler ML, Rodkey EA, Taracila MA, Drawz SM, Bethel CR, Papp-Wallace KM, Smith KM, Xu Y, Dwulit-Smith JR, Romagnoli C, Caselli E, Prati F, van den Akker F, Bonomo RA.

J Med Chem. 2013 Feb 14;56(3):1084-97. doi: 10.1021/jm301490d. Epub 2013 Feb 4.

29.

Acinetobacter baumannii rOmpA vaccine dose alters immune polarization and immunodominant epitopes.

Lin L, Tan B, Pantapalangkoor P, Ho T, Hujer AM, Taracila MA, Bonomo RA, Spellberg B.

Vaccine. 2013 Jan 2;31(2):313-8. doi: 10.1016/j.vaccine.2012.11.008. Epub 2012 Nov 12.

30.

Substitutions at position 105 in SHV family β-lactamases decrease catalytic efficiency and cause inhibitor resistance.

Li M, Conklin BC, Taracila MA, Hutton RA, Skalweit MJ.

Antimicrob Agents Chemother. 2012 Nov;56(11):5678-86. doi: 10.1128/AAC.00711-12. Epub 2012 Aug 20.

31.

Early insights into the interactions of different β-lactam antibiotics and β-lactamase inhibitors against soluble forms of Acinetobacter baumannii PBP1a and Acinetobacter sp. PBP3.

Papp-Wallace KM, Senkfor B, Gatta J, Chai W, Taracila MA, Shanmugasundaram V, Han S, Zaniewski RP, Lacey BM, Tomaras AP, Skalweit MJ, Harris ME, Rice LB, Buynak JD, Bonomo RA.

Antimicrob Agents Chemother. 2012 Nov;56(11):5687-92. doi: 10.1128/AAC.01027-12. Epub 2012 Aug 20.

32.

Exploring the role of a conserved class A residue in the Ω-Loop of KPC-2 β-lactamase: a mechanism for ceftazidime hydrolysis.

Levitt PS, Papp-Wallace KM, Taracila MA, Hujer AM, Winkler ML, Smith KM, Xu Y, Harris ME, Bonomo RA.

J Biol Chem. 2012 Sep 14;287(38):31783-93. doi: 10.1074/jbc.M112.348540. Epub 2012 Jul 26.

33.

Understanding the molecular determinants of substrate and inhibitor specificities in the Carbapenemase KPC-2: exploring the roles of Arg220 and Glu276.

Papp-Wallace KM, Taracila MA, Smith KM, Xu Y, Bonomo RA.

Antimicrob Agents Chemother. 2012 Aug;56(8):4428-38. doi: 10.1128/AAC.05769-11. Epub 2012 Jun 11.

34.

Carbapenems: past, present, and future.

Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA.

Antimicrob Agents Chemother. 2011 Nov;55(11):4943-60. doi: 10.1128/AAC.00296-11. Epub 2011 Aug 22. Review.

35.

Raman crystallographic studies of the intermediates formed by Ser130Gly SHV, a beta-lactamase that confers resistance to clinical inhibitors.

Helfand MS, Taracila MA, Totir MA, Bonomo RA, Buynak JD, van den Akker F, Carey PR.

Biochemistry. 2007 Jul 24;46(29):8689-99. Epub 2007 Jun 27.

PMID:
17595114

Supplemental Content

Loading ...
Support Center