Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 10

1.

A TetR-Family Protein (CAETHG_0459) Activates Transcription From a New Promoter Motif Associated With Essential Genes for Autotrophic Growth in Acetogens.

de Souza Pinto Lemgruber R, Valgepea K, Gonzalez Garcia RA, de Bakker C, Palfreyman RW, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E.

Front Microbiol. 2019 Nov 15;10:2549. doi: 10.3389/fmicb.2019.02549. eCollection 2019.

2.

Quantitative analysis of tetrahydrofolate metabolites from clostridium autoethanogenum.

de Souza Pinto Lemgruber R, Valgepea K, Hodson MP, Tappel R, Simpson SD, Köpke M, Nielsen LK, Marcellin E.

Metabolomics. 2018 Feb 16;14(3):35. doi: 10.1007/s11306-018-1331-2.

PMID:
30830344
3.

Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB).

de Souza Pinto Lemgruber R, Valgepea K, Tappel R, Behrendorff JB, Palfreyman RW, Plan M, Hodson MP, Simpson SD, Nielsen LK, Köpke M, Marcellin E.

Metab Eng. 2019 May;53:14-23. doi: 10.1016/j.ymben.2019.01.003. Epub 2019 Jan 11.

PMID:
30641139
4.

H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum.

Valgepea K, de Souza Pinto Lemgruber R, Abdalla T, Binos S, Takemori N, Takemori A, Tanaka Y, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E.

Biotechnol Biofuels. 2018 Mar 1;11:55. doi: 10.1186/s13068-018-1052-9. eCollection 2018.

5.

Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens.

Valgepea K, de Souza Pinto Lemgruber R, Meaghan K, Palfreyman RW, Abdalla T, Heijstra BD, Behrendorff JB, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E.

Cell Syst. 2017 May 24;4(5):505-515.e5. doi: 10.1016/j.cels.2017.04.008. Epub 2017 May 17.

6.

Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks.

Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M.

Front Microbiol. 2016 May 11;7:694. doi: 10.3389/fmicb.2016.00694. eCollection 2016. Review.

7.

Biosynthesis of poly[(R)-3-hydroxyalkanoate] copolymers with controlled repeating unit compositions and physical properties.

Tappel RC, Kucharski JM, Mastroianni JM, Stipanovic AJ, Nomura CT.

Biomacromolecules. 2012 Sep 10;13(9):2964-72. doi: 10.1021/bm301043t. Epub 2012 Aug 17.

PMID:
22873826
8.

Glycerine and levulinic acid: renewable co-substrates for the fermentative synthesis of short-chain poly(hydroxyalkanoate) biopolymers.

Ashby RD, Solaiman DK, Strahan GD, Zhu C, Tappel RC, Nomura CT.

Bioresour Technol. 2012 Aug;118:272-80. doi: 10.1016/j.biortech.2012.05.092. Epub 2012 May 26.

PMID:
22705534
9.

Precise control of repeating unit composition in biodegradable poly(3-hydroxyalkanoate) polymers synthesized by Escherichia coli.

Tappel RC, Wang Q, Nomura CT.

J Biosci Bioeng. 2012 Apr;113(4):480-6. doi: 10.1016/j.jbiosc.2011.12.004. Epub 2012 Jan 16.

PMID:
22248859
10.

Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks.

Wang Q, Tappel RC, Zhu C, Nomura CT.

Appl Environ Microbiol. 2012 Jan;78(2):519-27. doi: 10.1128/AEM.07020-11. Epub 2011 Nov 18.

Supplemental Content

Loading ...
Support Center