Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 49

1.

An interaction network between the SNARE VAMP7 and Rab GTPases within a ciliary membrane-targeting complex.

Kandachar V, Tam BM, Moritz OL, Deretic D.

J Cell Sci. 2018 Dec 10;131(24). pii: jcs222034. doi: 10.1242/jcs.222034.

PMID:
30404838
2.

Generation and Analysis of Xenopus laevis Models of Retinal Degeneration Using CRISPR/Cas9.

Feehan JM, Stanar P, Tam BM, Chiu C, Moritz OL.

Methods Mol Biol. 2019;1834:193-207. doi: 10.1007/978-1-4939-8669-9_14.

PMID:
30324446
3.

Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9.

Feehan JM, Chiu CN, Stanar P, Tam BM, Ahmed SN, Moritz OL.

Sci Rep. 2017 Jul 31;7(1):6920. doi: 10.1038/s41598-017-07153-4.

4.

Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic X. laevis Models of Retinitis Pigmentosa.

Vent-Schmidt RYJ, Wen RH, Zong Z, Chiu CN, Tam BM, May CG, Moritz OL.

J Neurosci. 2017 Jan 25;37(4):1039-1054. doi: 10.1523/JNEUROSCI.1647-16.2016.

5.

Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function.

Jiang L, Tam BM, Ying G, Wu S, Hauswirth WW, Frederick JM, Moritz OL, Baehr W.

FASEB J. 2015 Dec;29(12):4866-80. doi: 10.1096/fj.15-275677. Epub 2015 Jul 30.

6.

Preparation of Xenopus laevis retinal cryosections for electron microscopy.

Tam BM, Yang LL, Bogėa TH, Ross B, Martens G, Moritz OL.

Exp Eye Res. 2015 Jul;136:86-90. doi: 10.1016/j.exer.2015.05.014. Epub 2015 May 22.

PMID:
26008144
7.

High connectivity in Rastrelliger kanagurta: influence of historical signatures and migratory behaviour inferred from mtDNA cytochrome b.

Akib NA, Tam BM, Phumee P, Abidin MZ, Tamadoni S, Mather PB, Nor SA.

PLoS One. 2015 Mar 18;10(3):e0119749. doi: 10.1371/journal.pone.0119749. eCollection 2015.

8.

Is the kidney disease quality of life-36 (KDQOL-36) a valid instrument for Chinese dialysis patients?

Chow SK, Tam BM.

BMC Nephrol. 2014 Dec 15;15:199. doi: 10.1186/1471-2369-15-199.

9.

Gender dimorphism and age of onset in malignant peripheral nerve sheath tumor preclinical models and human patients.

Shurell E, Tran LM, Nakashima J, Smith KB, Tam BM, Li Y, Dry SM, Federman N, Tap WD, Wu H, Eilber FC.

BMC Cancer. 2014 Nov 15;14:827. doi: 10.1186/1471-2407-14-827.

10.

Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa.

Tam BM, Noorwez SM, Kaushal S, Kono M, Moritz OL.

J Neurosci. 2014 Oct 1;34(40):13336-48. doi: 10.1523/JNEUROSCI.1655-14.2014.

11.

A preliminary report on the effectiveness of nanotechnology anti-microbial spray dressing in preventing Tenckhoff catheter exit-site infection.

Tam BM, Chow SK.

Perit Dial Int. 2014 Sep-Oct;34(6):670-3. doi: 10.3747/pdi.2013.00199. No abstract available.

12.

Mutant ELOVL4 that causes autosomal dominant stargardt-3 macular dystrophy is misrouted to rod outer segment disks.

Agbaga MP, Tam BM, Wong JS, Yang LL, Anderson RE, Moritz OL.

Invest Ophthalmol Vis Sci. 2014 May 15;55(6):3669-80. doi: 10.1167/iovs.13-13099.

13.

Novel dedifferentiated liposarcoma xenograft models reveal PTEN down-regulation as a malignant signature and response to PI3K pathway inhibition.

Smith KB, Tran LM, Tam BM, Shurell EM, Li Y, Braas D, Tap WD, Christofk HR, Dry SM, Eilber FC, Wu H.

Am J Pathol. 2013 Apr;182(4):1400-11. doi: 10.1016/j.ajpath.2013.01.002. Epub 2013 Feb 12.

14.

Generation of transgenic X. laevis models of retinal degeneration.

Tam BM, Lai CC, Zong Z, Moritz OL.

Methods Mol Biol. 2013;935:113-25. doi: 10.1007/978-1-62703-080-9_8.

PMID:
23150364
15.

Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration.

Lee DC, Vazquez-Chona FR, Ferrell WD, Tam BM, Jones BW, Marc RE, Moritz OL.

J Neurosci. 2012 Feb 8;32(6):2121-8. doi: 10.1523/JNEUROSCI.4752-11.2012.

16.

Targeting of mouse guanylate cyclase 1 (Gucy2e) to Xenopus laevis rod outer segments.

Karan S, Tam BM, Moritz OL, Baehr W.

Vision Res. 2011 Nov;51(21-22):2304-11. doi: 10.1016/j.visres.2011.09.001. Epub 2011 Sep 12.

17.

Recent insights into the mechanisms underlying light-dependent retinal degeneration from X. laevis models of retinitis pigmentosa.

Moritz OL, Tam BM.

Adv Exp Med Biol. 2010;664:509-15. doi: 10.1007/978-1-4419-1399-9_58.

PMID:
20238053
18.

The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration.

Tam BM, Moritz OL.

J Neurosci. 2009 Dec 2;29(48):15145-54. doi: 10.1523/JNEUROSCI.4259-09.2009.

19.

The dependence of retinal degeneration caused by the rhodopsin P23H mutation on light exposure and vitamin a deprivation.

Tam BM, Qazalbash A, Lee HC, Moritz OL.

Invest Ophthalmol Vis Sci. 2010 Mar;51(3):1327-34. doi: 10.1167/iovs.09-4123. Epub 2009 Nov 20.

PMID:
19933196
20.

Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4.

Mazelova J, Astuto-Gribble L, Inoue H, Tam BM, Schonteich E, Prekeris R, Moritz OL, Randazzo PA, Deretic D.

EMBO J. 2009 Feb 4;28(3):183-92. doi: 10.1038/emboj.2008.267. Epub 2009 Jan 15.

21.

CRX controls retinal expression of the X-linked juvenile retinoschisis (RS1) gene.

Langmann T, Lai CC, Weigelt K, Tam BM, Warneke-Wittstock R, Moritz OL, Weber BH.

Nucleic Acids Res. 2008 Nov;36(20):6523-34. doi: 10.1093/nar/gkn737. Epub 2008 Oct 16.

22.

Controlled rod cell ablation in transgenic Xenopus laevis.

Hamm LM, Tam BM, Moritz OL.

Invest Ophthalmol Vis Sci. 2009 Feb;50(2):885-92. doi: 10.1167/iovs.08-2337. Epub 2008 Oct 3.

PMID:
18836175
23.

On-line monitoring and control of methanol concentration in shake-flask cultures of Pichia pastoris.

Guarna MM, Lesnicki GJ, Tam BM, Robinson J, Radziminski CZ, Hasenwinkle D, Boraston A, Jervis E, MacGillivray RT, Turner RF, Kilburn DG.

Biotechnol Bioeng. 1997 Nov 5;56(3):279-86. doi: 10.1002/(SICI)1097-0290(19971105)56:3<279::AID-BIT5>3.0.CO;2-G.

PMID:
18636643
25.
26.
27.

Uncoupling of photoreceptor peripherin/rds fusogenic activity from biosynthesis, subunit assembly, and targeting: a potential mechanism for pathogenic effects.

Ritter LM, Boesze-Battaglia K, Tam BM, Moritz OL, Khattree N, Chen SC, Goldberg AF.

J Biol Chem. 2004 Sep 17;279(38):39958-67. Epub 2004 Jul 13.

28.

The C terminus of peripherin/rds participates in rod outer segment targeting and alignment of disk incisures.

Tam BM, Moritz OL, Papermaster DS.

Mol Biol Cell. 2004 Apr;15(4):2027-37. Epub 2004 Feb 6.

29.

The role of subunit assembly in peripherin-2 targeting to rod photoreceptor disk membranes and retinitis pigmentosa.

Loewen CJ, Moritz OL, Tam BM, Papermaster DS, Molday RS.

Mol Biol Cell. 2003 Aug;14(8):3400-13. Epub 2003 May 3.

30.

Arrestin migrates in photoreceptors in response to light: a study of arrestin localization using an arrestin-GFP fusion protein in transgenic frogs.

Peterson JJ, Tam BM, Moritz OL, Shelamer CL, Dugger DR, McDowell JH, Hargrave PA, Papermaster DS, Smith WC.

Exp Eye Res. 2003 May;76(5):553-63.

PMID:
12697419
31.
32.

Selection of transgenic Xenopus laevis using antibiotic resistance.

Moritz OL, Biddle KE, Tam BM.

Transgenic Res. 2002 Jun;11(3):315-9.

PMID:
12113464
33.

Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods.

Moritz OL, Tam BM, Hurd LL, Peränen J, Deretic D, Papermaster DS.

Mol Biol Cell. 2001 Aug;12(8):2341-51.

34.
35.

Spectral and metal-binding properties of three single-point tryptophan mutants of the human transferrin N-lobe.

He QY, Mason AB, Lyons BA, Tam BM, Nguyen V, MacGillivray RT, Woodworth RC.

Biochem J. 2001 Mar 1;354(Pt 2):423-9.

36.
37.

Mutations at the histidine 249 ligand profoundly alter the spectral and iron-binding properties of human serum transferrin N-lobe.

He QY, Mason AB, Pakdaman R, Chasteen ND, Dixon BK, Tam BM, Nguyen V, MacGillivray RT, Woodworth RC.

Biochemistry. 2000 Feb 15;39(6):1205-10.

PMID:
10684597
39.

Fluorescent photoreceptors of transgenic Xenopus laevis imaged in vivo by two microscopy techniques.

Moritz OL, Tam BM, Knox BE, Papermaster DS.

Invest Ophthalmol Vis Sci. 1999 Dec;40(13):3276-80.

PMID:
10586953
40.

Dual role of Lys206-Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site.

He QY, Mason AB, Tam BM, MacGillivray RT, Woodworth RC.

Biochemistry. 1999 Jul 27;38(30):9704-11.

PMID:
10423249
41.

X-ray crystallography and mass spectroscopy reveal that the N-lobe of human transferrin expressed in Pichia pastoris is folded correctly but is glycosylated on serine-32.

Bewley MC, Tam BM, Grewal J, He S, Shewry S, Murphy ME, Mason AB, Woodworth RC, Baker EN, MacGillivray RT.

Biochemistry. 1999 Feb 23;38(8):2535-41.

PMID:
10029548
42.

Mutations at nonliganding residues Tyr-85 and Glu-83 in the N-lobe of human serum transferrin. Functional second shell effects.

He QY, Mason AB, Woodworth RC, Tam BM, MacGillivray RT, Grady JK, Chasteen ND.

J Biol Chem. 1998 Jul 3;273(27):17018-24.

43.

Inequivalence of the two tyrosine ligands in the N-lobe of human serum transferrin.

He QY, Mason AB, Woodworth RC, Tam BM, MacGillivray RT, Grady JK, Chasteen ND.

Biochemistry. 1997 Dec 2;36(48):14853-60.

PMID:
9398207
44.

Chemical, spectroscopic and structural investigation of the substrate-binding site in ascorbate peroxidase.

Hill AP, Modi S, Sutcliffe MJ, Turner DD, Gilfoyle DJ, Smith AT, Tam BM, Lloyd E.

Eur J Biochem. 1997 Sep 1;248(2):347-54.

45.

Receptor recognition sites reside in both lobes of human serum transferrin.

Mason AB, Tam BM, Woodworth RC, Oliver RW, Green BN, Lin LN, Brandts JF, Savage KJ, Lineback JA, MacGillivray RT.

Biochem J. 1997 Aug 15;326 ( Pt 1):77-85.

46.

Effects of mutations of aspartic acid 63 on the metal-binding properties of the recombinant N-lobe of human serum transferrin.

He QY, Mason AB, Woodworth RC, Tam BM, Wadsworth T, MacGillivray RT.

Biochemistry. 1997 May 6;36(18):5522-8.

PMID:
9154935
47.

Association of the two lobes of ovotransferrin is a prerequisite for receptor recognition. Studies with recombinant ovotransferrins.

Mason AB, Woodworth RC, Oliver RW, Green BN, Lin LN, Brandts JF, Savage KJ, Tam BM, MacGillivray RT.

Biochem J. 1996 Oct 15;319 ( Pt 2):361-8.

48.

Production and isolation of the recombinant N-lobe of human serum transferrin from the methylotrophic yeast Pichia pastoris.

Mason AB, Woodworth RC, Oliver RW, Green BN, Lin LN, Brandts JF, Tam BM, Maxwell A, MacGillivray RT.

Protein Expr Purif. 1996 Aug;8(1):119-25.

PMID:
8812842
49.

Interlobe communication in 13C-methionine-labeled human transferrin.

Beatty EJ, Cox MC, Frenkiel TA, Tam BM, Mason AB, MacGillivray RT, Sadler PJ, Woodworth RC.

Biochemistry. 1996 Jun 18;35(24):7635-42.

PMID:
8672464

Supplemental Content

Support Center