Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 45

1.

Misfolding and aggregation of nascent proteins: a novel mode of toxic cadmium action in vivo.

Tamás MJ, Fauvet B, Christen P, Goloubinoff P.

Curr Genet. 2018 Feb;64(1):177-181. doi: 10.1007/s00294-017-0748-x. Epub 2017 Sep 21. Review.

2.

Cadmium Causes Misfolding and Aggregation of Cytosolic Proteins in Yeast.

Jacobson T, Priya S, Sharma SK, Andersson S, Jakobsson S, Tanghe R, Ashouri A, Rauch S, Goloubinoff P, Christen P, Tamás MJ.

Mol Cell Biol. 2017 Aug 11;37(17). pii: e00490-16. doi: 10.1128/MCB.00490-16. Print 2017 Sep 1.

3.

Disentangling genetic and epigenetic determinants of ultrafast adaptation.

Gjuvsland AB, Zörgö E, Samy JK, Stenberg S, Demirsoy IH, Roque F, Maciaszczyk-Dziubinska E, Migocka M, Alonso-Perez E, Zackrisson M, Wysocki R, Tamás MJ, Jonassen I, Omholt SW, Warringer J.

Mol Syst Biol. 2016 Dec 15;12(12):892. doi: 10.15252/msb.20166951.

4.

The mitogen-activated protein kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1.

Ahmadpour D, Maciaszczyk-Dziubinska E, Babazadeh R, Dahal S, Migocka M, Andersson M, Wysocki R, Tamás MJ, Hohmann S.

FEBS Lett. 2016 Oct;590(20):3649-3659. doi: 10.1002/1873-3468.12390. Epub 2016 Sep 28.

5.

Distinct stress conditions result in aggregation of proteins with similar properties.

Weids AJ, Ibstedt S, Tamás MJ, Grant CM.

Sci Rep. 2016 Apr 18;6:24554. doi: 10.1038/srep24554.

6.

Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8.

Kumar NV, Yang J, Pillai JK, Rawat S, Solano C, Kumar A, Grøtli M, Stemmler TL, Rosen BP, Tamás MJ.

Mol Cell Biol. 2015 Dec 28;36(6):913-22. doi: 10.1128/MCB.00842-15.

7.

HwHog1 kinase activity is crucial for survival of Hortaea werneckii in extremely hyperosmolar environments.

Kejžar A, Grötli M, Tamás MJ, Plemenitaš A, Lenassi M.

Fungal Genet Biol. 2015 Jan;74:45-58. doi: 10.1016/j.fgb.2014.11.004. Epub 2014 Dec 4.

PMID:
25483129
8.

Elucidating the response of Kluyveromyces lactis to arsenite and peroxide stress and the role of the transcription factor KlYap8.

Veide Vilg J, Kumar NV, Maciaszczyk-Dziubinska E, Sloma E, Onesime D, Aubert J, Migocka M, Wysocki R, Tamás MJ.

Biochim Biophys Acta. 2014 Nov;1839(11):1295-306. doi: 10.1016/j.bbagrm.2014.09.004. Epub 2014 Sep 16.

PMID:
25234620
9.

Global analysis of protein aggregation in yeast during physiological conditions and arsenite stress.

Ibstedt S, Sideri TC, Grant CM, Tamás MJ.

Biol Open. 2014 Sep 12;3(10):913-23. doi: 10.1242/bio.20148938.

10.

Heavy metals and metalloids as a cause for protein misfolding and aggregation.

Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P.

Biomolecules. 2014 Feb 25;4(1):252-67. doi: 10.3390/biom4010252. Review.

11.

Mathematical modelling of arsenic transport, distribution and detoxification processes in yeast.

Talemi SR, Jacobson T, Garla V, Navarrete C, Wagner A, Tamás MJ, Schaber J.

Mol Microbiol. 2014 Jun;92(6):1343-56. doi: 10.1111/mmi.12631. Epub 2014 May 23.

12.

Application of a peptide-based assay to characterize inhibitors targeting protein kinases from yeast.

Veide Vilg J, Dahal S, Ljungdahl T, Grøtli M, Tamás MJ.

Curr Genet. 2014 Aug;60(3):193-200. doi: 10.1007/s00294-014-0424-3. Epub 2014 Mar 19.

PMID:
24643376
13.

Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins.

Ahmadpour D, Geijer C, Tamás MJ, Lindkvist-Petersson K, Hohmann S.

Biochim Biophys Acta. 2014 May;1840(5):1482-91. doi: 10.1016/j.bbagen.2013.09.027. Epub 2013 Sep 26. Review.

PMID:
24076236
14.

Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast.

Jacobson T, Navarrete C, Sharma SK, Sideri TC, Ibstedt S, Priya S, Grant CM, Christen P, Goloubinoff P, Tamás MJ.

J Cell Sci. 2012 Nov 1;125(Pt 21):5073-83. doi: 10.1242/jcs.107029. Epub 2012 Sep 3.

15.

Amplification of the CUP1 gene is associated with evolution of copper tolerance in Saccharomyces cerevisiae.

Adamo GM, Lotti M, Tamás MJ, Brocca S.

Microbiology. 2012 Sep;158(Pt 9):2325-35. doi: 10.1099/mic.0.058024-0. Epub 2012 Jul 12.

PMID:
22790396
16.

Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase.

Mandal G, Sharma M, Kruse M, Sander-Juelch C, Munro LA, Wang Y, Vilg JV, Tamás MJ, Bhattacharjee H, Wiese M, Mukhopadhyay R.

Mol Microbiol. 2012 Sep;85(6):1204-18. doi: 10.1111/j.1365-2958.2012.08169.x. Epub 2012 Jul 26.

17.

Determination of primary sequence specificity of Arabidopsis MAPKs MPK3 and MPK6 leads to identification of new substrates.

Sörensson C, Lenman M, Veide-Vilg J, Schopper S, Ljungdahl T, Grøtli M, Tamás MJ, Peck SC, Andreasson E.

Biochem J. 2012 Sep 1;446(2):271-8. doi: 10.1042/BJ20111809.

PMID:
22631074
18.

Yeast aquaglyceroporins use the transmembrane core to restrict glycerol transport.

Geijer C, Ahmadpour D, Palmgren M, Filipsson C, Klein DM, Tamás MJ, Hohmann S, Lindkvist-Petersson K.

J Biol Chem. 2012 Jul 6;287(28):23562-70. doi: 10.1074/jbc.M112.353482. Epub 2012 May 16.

19.

Glutathione serves an extracellular defence function to decrease arsenite accumulation and toxicity in yeast.

Thorsen M, Jacobson T, Vooijs R, Navarrete C, Bliek T, Schat H, Tamás MJ.

Mol Microbiol. 2012 Jun;84(6):1177-88. doi: 10.1111/j.1365-2958.2012.08085.x. Epub 2012 May 23.

20.

Design, synthesis, and characterization of a highly effective Hog1 inhibitor: a powerful tool for analyzing MAP kinase signaling in yeast.

Dinér P, Veide Vilg J, Kjellén J, Migdal I, Andersson T, Gebbia M, Giaever G, Nislow C, Hohmann S, Wysocki R, Tamás MJ, Grøtli M.

PLoS One. 2011;6(5):e20012. doi: 10.1371/journal.pone.0020012. Epub 2011 May 31.

21.

Arsenic transport in prokaryotes and eukaryotic microbes.

Rosen BP, Tamás MJ.

Adv Exp Med Biol. 2010;679:47-55. Review.

PMID:
20666223
22.

Positional scanning peptide libraries for kinase substrate specificity determinations: straightforward and reproducible synthesis using pentafluorophenyl esters.

Ljungdahl T, Veide-Vilg J, Wallner F, Tamás MJ, Grøtli M.

J Comb Chem. 2010 Sep 13;12(5):733-42. doi: 10.1021/cc100095y.

PMID:
20608733
23.

How Saccharomyces cerevisiae copes with toxic metals and metalloids.

Wysocki R, Tamás MJ.

FEMS Microbiol Rev. 2010 Nov;34(6):925-51. doi: 10.1111/j.1574-6976.2010.00217.x. Review.

24.

Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae.

Thorsen M, Perrone GG, Kristiansson E, Traini M, Ye T, Dawes IW, Nerman O, Tamás MJ.

BMC Genomics. 2009 Mar 12;10:105. doi: 10.1186/1471-2164-10-105.

25.

Evolutionary forces act on promoter length: identification of enriched cis-regulatory elements.

Kristiansson E, Thorsen M, Tamás MJ, Nerman O.

Mol Biol Evol. 2009 Jun;26(6):1299-307. doi: 10.1093/molbev/msp040. Epub 2009 Mar 3.

PMID:
19258451
26.

Characterization of the DNA-binding motif of the arsenic-responsive transcription factor Yap8p.

Ilina Y, Sloma E, Maciaszczyk-Dziubinska E, Novotny M, Thorsen M, Wysocki R, Tamás MJ.

Biochem J. 2008 Nov 1;415(3):467-75. doi: 10.1042/BJ20080713.

PMID:
18593383
27.

Mitogen-activated protein kinase Hog1 mediates adaptation to G1 checkpoint arrest during arsenite and hyperosmotic stress.

Migdal I, Ilina Y, Tamás MJ, Wysocki R.

Eukaryot Cell. 2008 Aug;7(8):1309-17. doi: 10.1128/EC.00038-08. Epub 2008 Jun 13.

28.

A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes.

Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP.

BMC Biol. 2008 Jun 10;6:26. doi: 10.1186/1741-7007-6-26.

29.

Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.

Thorsen M, Lagniel G, Kristiansson E, Junot C, Nerman O, Labarre J, Tamás MJ.

Physiol Genomics. 2007 Jun 19;30(1):35-43. Epub 2007 Feb 27.

PMID:
17327492
30.

Regulation of the arsenic-responsive transcription factor Yap8p involves the ubiquitin-proteasome pathway.

Di Y, Tamás MJ.

J Cell Sci. 2007 Jan 15;120(Pt 2):256-64. Epub 2007 Jan 2.

31.

The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast.

Thorsen M, Di Y, Tängemo C, Morillas M, Ahmadpour D, Van der Does C, Wagner A, Johansson E, Boman J, Posas F, Wysocki R, Tamás MJ.

Mol Biol Cell. 2006 Oct;17(10):4400-10. Epub 2006 Aug 2.

32.

Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p.

Wysocki R, Fortier PK, Maciaszczyk E, Thorsen M, Leduc A, Odhagen A, Owsianik G, Ulaszewski S, Ramotar D, Tamás MJ.

Mol Biol Cell. 2004 May;15(5):2049-60. Epub 2004 Feb 20.

33.

Identification of residues controlling transport through the yeast aquaglyceroporin Fps1 using a genetic screen.

Karlgren S, Filipsson C, Mullins JG, Bill RM, Tamás MJ, Hohmann S.

Eur J Biochem. 2004 Feb;271(4):771-9.

PMID:
14764093
34.

A regulatory domain in the C-terminal extension of the yeast glycerol channel Fps1p.

Hedfalk K, Bill RM, Mullins JG, Karlgren S, Filipsson C, Bergstrom J, Tamás MJ, Rydström J, Hohmann S.

J Biol Chem. 2004 Apr 9;279(15):14954-60. Epub 2004 Jan 28.

35.

Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p.

Wysocki R, Clemens S, Augustyniak D, Golik P, Maciaszczyk E, Tamás MJ, Dziadkowiec D.

Biochem Biophys Res Commun. 2003 May 2;304(2):293-300.

PMID:
12711313
36.

A short regulatory domain restricts glycerol transport through yeast Fps1p.

Tamás MJ, Karlgren S, Bill RM, Hedfalk K, Allegri L, Ferreira M, Thevelein JM, Rydström J, Mullins JG, Hohmann S.

J Biol Chem. 2003 Feb 21;278(8):6337-45. Epub 2002 Dec 16.

37.

Mechanisms involved in metalloid transport and tolerance acquisition.

Tamás MJ, Wysocki R.

Curr Genet. 2001 Aug;40(1):2-12. Review.

PMID:
11570513
38.

The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae.

Wysocki R, Chéry CC, Wawrzycka D, Van Hulle M, Cornelis R, Thevelein JM, Tamás MJ.

Mol Microbiol. 2001 Jun;40(6):1391-401.

39.

Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans.

Fillinger S, Ruijter G, Tamás MJ, Visser J, Thevelein JM, d'Enfert C.

Mol Microbiol. 2001 Jan;39(1):145-57.

40.

Molecular characterization of the plasma membrane H(+)-ATPase, an antifungal target in Cryptococcus neoformans.

Soteropoulos P, Vaz T, Santangelo R, Paderu P, Huang DY, Tamás MJ, Perlin DS.

Antimicrob Agents Chemother. 2000 Sep;44(9):2349-55.

41.
42.

Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation.

Tamás MJ, Luyten K, Sutherland FC, Hernandez A, Albertyn J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S.

Mol Microbiol. 1999 Feb;31(4):1087-104.

43.
44.

Normal SPECT thallium-201 bull's-eye display: gender differences.

Eisner RL, Tamas MJ, Cloninger K, Shonkoff D, Oates JA, Gober AM, Dunn DW, Malko JA, Churchwell AL, Patterson RE.

J Nucl Med. 1988 Dec;29(12):1901-9.

45.

Interfacing the Dinamap 845 blood pressure monitor to a microcomputer.

Tamas MJ.

IEEE Trans Biomed Eng. 1985 Dec;32(12):1061-3. No abstract available.

PMID:
4077084

Supplemental Content

Loading ...
Support Center