Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 80

1.

Identifying the Growth Modulon of Corynebacterium glutamicum.

Haas T, Graf M, Nieß A, Busche T, Kalinowski J, Blombach B, Takors R.

Front Microbiol. 2019 May 8;10:974. doi: 10.3389/fmicb.2019.00974. eCollection 2019.

2.

Grand Research Challenges for Sustainable Industrial Biotechnology.

Straathof AJJ, Wahl SA, Benjamin KR, Takors R, Wierckx N, Noorman HJ.

Trends Biotechnol. 2019 May 1. pii: S0167-7799(19)30078-2. doi: 10.1016/j.tibtech.2019.04.002. [Epub ahead of print] Review.

PMID:
31054854
3.

The Less the Better: How Suppressed Base Addition Boosts Production of Monoclonal Antibodies With Chinese Hamster Ovary Cells.

Becker M, Junghans L, Teleki A, Bechmann J, Takors R.

Front Bioeng Biotechnol. 2019 Apr 11;7:76. doi: 10.3389/fbioe.2019.00076. eCollection 2019.

4.

HILIC-Enabled 13C Metabolomics Strategies: Comparing Quantitative Precision and Spectral Accuracy of QTOF High- and QQQ Low-Resolution Mass Spectrometry.

Feith A, Teleki A, Graf M, Favilli L, Takors R.

Metabolites. 2019 Apr 2;9(4). pii: E63. doi: 10.3390/metabo9040063.

5.

Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum.

Schwentner A, Feith A, Münch E, Stiefelmaier J, Lauer I, Favilli L, Massner C, Öhrlein J, Grund B, Hüser A, Takors R, Blombach B.

Biotechnol Biofuels. 2019 Mar 25;12:65. doi: 10.1186/s13068-019-1410-2. eCollection 2019.

6.

From nutritional wealth to autophagy: In vivo metabolic dynamics in the cytosol, mitochondrion and shuttles of IgG producing CHO cells.

Junghans L, Teleki A, Wijaya AW, Becker M, Schweikert M, Takors R.

Metab Eng. 2019 Jul;54:145-159. doi: 10.1016/j.ymben.2019.02.005. Epub 2019 Mar 28.

PMID:
30930288
7.

Perfusion cultures require optimum respiratory ATP supply to maximize cell-specific and volumetric productivities.

Becker M, Junghans L, Teleki A, Bechmann J, Takors R.

Biotechnol Bioeng. 2019 May;116(5):951-960. doi: 10.1002/bit.26926. Epub 2019 Jan 29.

PMID:
30659583
8.

Protein production in Escherichia coli is guided by the trade-off between intracellular substrate availability and energy cost.

Nieß A, Siemann-Herzberg M, Takors R.

Microb Cell Fact. 2019 Jan 17;18(1):8. doi: 10.1186/s12934-019-1057-5.

9.

Quantitative Profiling of Endogenous Metabolites Using Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry (HILIC-MS/MS).

Teleki A, Takors R.

Methods Mol Biol. 2019;1859:185-207. doi: 10.1007/978-1-4939-8757-3_10.

PMID:
30421230
10.

A guide to gene regulatory network inference for obtaining predictive solutions: Underlying assumptions and fundamental biological and data constraints.

Barbosa S, Niebel B, Wolf S, Mauch K, Takors R.

Biosystems. 2018 Dec;174:37-48. doi: 10.1016/j.biosystems.2018.10.008. Epub 2018 Oct 9. Review.

PMID:
30312740
11.

Physiological Response of Corynebacterium glutamicum to Increasingly Nutrient-Rich Growth Conditions.

Graf M, Zieringer J, Haas T, Nieß A, Blombach B, Takors R.

Front Microbiol. 2018 Aug 29;9:2058. doi: 10.3389/fmicb.2018.02058. eCollection 2018.

12.

In Silico Prediction of Large-Scale Microbial Production Performance: Constraints for Getting Proper Data-Driven Models.

Zieringer J, Takors R.

Comput Struct Biotechnol J. 2018 Jul 6;16:246-256. doi: 10.1016/j.csbj.2018.06.002. eCollection 2018. Review.

13.

Deciphering the Adaptation of Corynebacterium glutamicum in Transition from Aerobiosis via Microaerobiosis to Anaerobiosis.

Lange J, Münch E, Müller J, Busche T, Kalinowski J, Takors R, Blombach B.

Genes (Basel). 2018 Jun 13;9(6). pii: E297. doi: 10.3390/genes9060297.

14.

Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do's and don'ts of successful technology transfer from laboratory to production scale.

Takors R, Kopf M, Mampel J, Bluemke W, Blombach B, Eikmanns B, Bengelsdorf FR, Weuster-Botz D, Dürre P.

Microb Biotechnol. 2018 Jul;11(4):606-625. doi: 10.1111/1751-7915.13270. Epub 2018 May 14. Review.

15.

Metabolic engineering to guide evolution - Creating a novel mode for L-valine production with Corynebacterium glutamicum.

Schwentner A, Feith A, Münch E, Busche T, Rückert C, Kalinowski J, Takors R, Blombach B.

Metab Eng. 2018 May;47:31-41. doi: 10.1016/j.ymben.2018.02.015. Epub 2018 Mar 6.

PMID:
29522826
16.

Valorization of pyrolysis water: a biorefinery side stream, for 1,2-propanediol production with engineered Corynebacterium glutamicum.

Lange J, Müller F, Bernecker K, Dahmen N, Takors R, Blombach B.

Biotechnol Biofuels. 2017 Nov 21;10:277. doi: 10.1186/s13068-017-0969-8. eCollection 2017.

17.

Harnessing novel chromosomal integration loci to utilize an organosolv-derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum.

Lange J, Müller F, Takors R, Blombach B.

Microb Biotechnol. 2018 Jan;11(1):257-263. doi: 10.1111/1751-7915.12879. Epub 2017 Nov 8.

18.

Lagrangian Trajectories to Predict the Formation of Population Heterogeneity in Large-Scale Bioreactors.

Kuschel M, Siebler F, Takors R.

Bioengineering (Basel). 2017 Mar 29;4(2). pii: E27. doi: 10.3390/bioengineering4020027.

19.

High Substrate Uptake Rates Empower Vibrio natriegens as Production Host for Industrial Biotechnology.

Hoffart E, Grenz S, Lange J, Nitschel R, Müller F, Schwentner A, Feith A, Lenfers-Lücker M, Takors R, Blombach B.

Appl Environ Microbiol. 2017 Oct 31;83(22). pii: e01614-17. doi: 10.1128/AEM.01614-17. Print 2017 Nov 15.

20.

Bioprocess scale-up/down as integrative enabling technology: from fluid mechanics to systems biology and beyond.

Delvigne F, Takors R, Mudde R, van Gulik W, Noorman H.

Microb Biotechnol. 2017 Sep;10(5):1267-1274. doi: 10.1111/1751-7915.12803. Epub 2017 Aug 14.

21.
22.

Experimentally Validated Model Enables Debottlenecking of in Vitro Protein Synthesis and Identifies a Control Shift under in Vivo Conditions.

Nieß A, Failmezger J, Kuschel M, Siemann-Herzberg M, Takors R.

ACS Synth Biol. 2017 Oct 20;6(10):1913-1921. doi: 10.1021/acssynbio.7b00117. Epub 2017 Jul 3.

PMID:
28627886
23.

Transcriptional response of Escherichia coli to ammonia and glucose fluctuations.

Simen JD, Löffler M, Jäger G, Schäferhoff K, Freund A, Matthes J, Müller J, Takors R; RecogNice-Team.

Microb Biotechnol. 2017 Jul;10(4):858-872. doi: 10.1111/1751-7915.12713. Epub 2017 Apr 26.

24.

Switching between nitrogen and glucose limitation: Unraveling transcriptional dynamics in Escherichia coli.

Löffler M, Simen JD, Müller J, Jäger G, Laghrami S, Schäferhoff K, Freund A; RecogNice-Team, Takors R.

J Biotechnol. 2017 Sep 20;258:2-12. doi: 10.1016/j.jbiotec.2017.04.011. Epub 2017 Apr 13.

PMID:
28412516
25.

Robust identification of metabolic control for microbial l-methionine production following an easy-to-use puristic approach.

Teleki A, Rahnert M, Bungart O, Gann B, Ochrombel I, Takors R.

Metab Eng. 2017 May;41:159-172. doi: 10.1016/j.ymben.2017.03.008. Epub 2017 Apr 4.

PMID:
28389396
26.

Dynamic modeling reveals a three-step response of Saccharomyces cerevisiae to high CO2 levels accompanied by increasing ATP demands.

Eigenstetter G, Takors R.

FEMS Yeast Res. 2017 Jan 1;17(1). doi: 10.1093/femsyr/fox008.

PMID:
28175306
27.

Escherichia coli HGT: Engineered for high glucose throughput even under slowly growing or resting conditions.

Michalowski A, Siemann-Herzberg M, Takors R.

Metab Eng. 2017 Mar;40:93-103. doi: 10.1016/j.ymben.2017.01.005. Epub 2017 Jan 18.

PMID:
28110078
28.

Engineering E. coli for large-scale production - Strategies considering ATP expenses and transcriptional responses.

Löffler M, Simen JD, Jäger G, Schäferhoff K, Freund A, Takors R.

Metab Eng. 2016 Nov;38:73-85. doi: 10.1016/j.ymben.2016.06.008. Epub 2016 Jul 1.

PMID:
27378496
29.

Editorial overview: Microbial systems biology: systems biology prepares the ground for successful synthetic biology.

Takors R, de Lorenzo V.

Curr Opin Microbiol. 2016 Oct;33:viii-x. doi: 10.1016/j.mib.2016.08.003. Epub 2016 Aug 24. No abstract available.

PMID:
27568258
30.

Tracking dipeptides at work-uptake and intracellular fate in CHO culture.

Sánchez-Kopper A, Becker M, Pfizenmaier J, Kessler C, Karau A, Takors R.

AMB Express. 2016 Dec;6(1):48. doi: 10.1186/s13568-016-0221-0. Epub 2016 Jul 22.

31.

Hyperosmotic stimulus study discloses benefits in ATP supply and reveals miRNA/mRNA targets to improve recombinant protein production of CHO cells.

Pfizenmaier J, Junghans L, Teleki A, Takors R.

Biotechnol J. 2016 Aug;11(8):1037-47. doi: 10.1002/biot.201500606. Epub 2016 Jun 13.

PMID:
27214792
32.

Dynamics of benzoate metabolism in Pseudomonas putida KT2440.

Sudarsan S, Blank LM, Dietrich A, Vielhauer O, Takors R, Schmid A, Reuss M.

Metab Eng Commun. 2016 Mar 15;3:97-110. doi: 10.1016/j.meteno.2016.03.005. eCollection 2016 Dec.

33.

Environmental stress speeds up DNA replication in Pseudomonas putida in chemostat cultivations.

Lieder S, Jahn M, Koepff J, Müller S, Takors R.

Biotechnol J. 2016 Jan;11(1):155-63. doi: 10.1002/biot.201500059. Epub 2015 Nov 25.

PMID:
26299279
34.

CO2 - Intrinsic Product, Essential Substrate, and Regulatory Trigger of Microbial and Mammalian Production Processes.

Blombach B, Takors R.

Front Bioeng Biotechnol. 2015 Aug 3;3:108. doi: 10.3389/fbioe.2015.00108. eCollection 2015. Review.

35.

Compartment-specific metabolomics for CHO reveals that ATP pools in mitochondria are much lower than in cytosol.

Matuszczyk JC, Teleki A, Pfizenmaier J, Takors R.

Biotechnol J. 2015 Oct;10(10):1639-50. doi: 10.1002/biot.201500060. Epub 2015 Jul 30.

PMID:
26179617
36.

Changes in intracellular ATP-content of CHO cells as response to hyperosmolality.

Pfizenmaier J, Matuszczyk JC, Takors R.

Biotechnol Prog. 2015 Sep-Oct;31(5):1212-6. doi: 10.1002/btpr.2143. Epub 2015 Jul 15.

PMID:
26146937
37.

Genome reduction boosts heterologous gene expression in Pseudomonas putida.

Lieder S, Nikel PI, de Lorenzo V, Takors R.

Microb Cell Fact. 2015 Feb 21;14:23. doi: 10.1186/s12934-015-0207-7.

38.

Alkaline conditions in hydrophilic interaction liquid chromatography for intracellular metabolite quantification using tandem mass spectrometry.

Teleki A, Sánchez-Kopper A, Takors R.

Anal Biochem. 2015 Apr 15;475:4-13. doi: 10.1016/j.ab.2015.01.002. Epub 2015 Jan 16.

PMID:
25600449
39.

Subpopulation-proteomics reveal growth rate, but not cell cycling, as a major impact on protein composition in Pseudomonas putida KT2440.

Lieder S, Jahn M, Seifert J, von Bergen M, Müller S, Takors R.

AMB Express. 2014 Aug 29;4:71. doi: 10.1186/s13568-014-0071-6. eCollection 2014.

40.

CO₂ /HCO₃⁻ perturbations of simulated large scale gradients in a scale-down device cause fast transcriptional responses in Corynebacterium glutamicum.

Buchholz J, Graf M, Freund A, Busche T, Kalinowski J, Blombach B, Takors R.

Appl Microbiol Biotechnol. 2014 Oct;98(20):8563-72. doi: 10.1007/s00253-014-6014-y. Epub 2014 Aug 21. Erratum in: Appl Microbiol Biotechnol. 2014 Oct;98(20):8775.

PMID:
25139448
41.

Phosphate limited fed-batch processes: impact on carbon usage and energy metabolism in Escherichia coli.

Schuhmacher T, Löffler M, Hurler T, Takors R.

J Biotechnol. 2014 Nov 20;190:96-104. doi: 10.1016/j.jbiotec.2014.04.025. Epub 2014 May 14.

PMID:
24833421
42.

Impact of different CO2/HCO3- levels on metabolism and regulation in Corynebacterium glutamicum.

Blombach B, Buchholz J, Busche T, Kalinowski J, Takors R.

J Biotechnol. 2013 Dec;168(4):331-40. doi: 10.1016/j.jbiotec.2013.10.005. Epub 2013 Oct 16.

PMID:
24140290
43.

Evolution of pyruvate kinase-deficient Escherichia coli mutants enables glycerol-based cell growth and succinate production.

Soellner S, Rahnert M, Siemann-Herzberg M, Takors R, Altenbuchner J.

J Appl Microbiol. 2013 Dec;115(6):1368-78. doi: 10.1111/jam.12333. Epub 2013 Sep 6.

44.

Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.

Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, Takors R, Eikmanns BJ, Blombach B.

Appl Environ Microbiol. 2013 Sep;79(18):5566-75. doi: 10.1128/AEM.01741-13. Epub 2013 Jul 8.

45.

Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller.

Gelves R, Dietrich A, Takors R.

Bioprocess Biosyst Eng. 2014 Mar;37(3):365-75. doi: 10.1007/s00449-013-1001-8. Epub 2013 Jul 5.

PMID:
23828243
46.

Scale-up of microbial processes: impacts, tools and open questions.

Takors R.

J Biotechnol. 2012 Jul 31;160(1-2):3-9. doi: 10.1016/j.jbiotec.2011.12.010. Epub 2011 Dec 21. Review.

PMID:
22206982
47.

Simplified absolute metabolite quantification by gas chromatography-isotope dilution mass spectrometry on the basis of commercially available source material.

Vielhauer O, Zakhartsev M, Horn T, Takors R, Reuss M.

J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Dec 15;879(32):3859-70. doi: 10.1016/j.jchromb.2011.10.036. Epub 2011 Nov 3.

PMID:
22100557
48.

Diversity-oriented production of metabolites derived from chorismate and their use in organic synthesis.

Bongaerts J, Esser S, Lorbach V, Al-Momani L, Müller MA, Franke D, Grondal C, Kurutsch A, Bujnicki R, Takors R, Raeven L, Wubbolts M, Bovenberg R, Nieger M, Schürmann M, Trachtmann N, Kozak S, Sprenger GA, Müller M.

Angew Chem Int Ed Engl. 2011 Aug 16;50(34):7781-6. doi: 10.1002/anie.201103261. Epub 2011 Jul 7. No abstract available.

PMID:
21739551
49.

The identification of enzyme targets for the optimization of a valine producing Corynebacterium glutamicum strain using a kinetic model.

Magnus JB, Oldiges M, Takors R.

Biotechnol Prog. 2009 May-Jun;25(3):754-62. doi: 10.1002/btpr.184.

PMID:
19405093
50.

Experimental design for the identification of macrokinetic models and model discrimination.

Takors R, Wiechert W, Weuster-Botz D.

Biotechnol Bioeng. 1997 Dec 5;56(5):564-76. doi: 10.1002/(SICI)1097-0290(19971205)56:5<564::AID-BIT10>3.0.CO;2-C.

PMID:
18642277

Supplemental Content

Loading ...
Support Center