Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 64

1.

Interaction between cardiac myosin-binding protein C and formin Fhod3.

Matsuyama S, Kage Y, Fujimoto N, Ushijima T, Tsuruda T, Kitamura K, Shiose A, Asada Y, Sumimoto H, Takeya R.

Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4386-E4395. doi: 10.1073/pnas.1716498115. Epub 2018 Apr 23.

PMID:
29686099
2.

[Neural Mechanisms of Temporal Monitoring and Prediction].

Tanaka M, Suzuki TW, Kameda M, Takeya R.

Brain Nerve. 2017 Nov;69(11):1213-1222. doi: 10.11477/mf.1416200898. Japanese.

PMID:
29172187
3.

The actin-organizing formin protein Fhod3 is required for postnatal development and functional maintenance of the adult heart in mice.

Ushijima T, Fujimoto N, Matsuyama S, Kan-O M, Kiyonari H, Shioi G, Kage Y, Yamasaki S, Takeya R, Sumimoto H.

J Biol Chem. 2018 Jan 5;293(1):148-162. doi: 10.1074/jbc.M117.813931. Epub 2017 Nov 20.

PMID:
29158260
4.

Predictive and tempo-flexible synchronization to a visual metronome in monkeys.

Takeya R, Kameda M, Patel AD, Tanaka M.

Sci Rep. 2017 Jul 21;7(1):6127. doi: 10.1038/s41598-017-06417-3.

5.

Gene Therapy.

Thorne B, Takeya R, Vitelli F, Swanson X.

Adv Biochem Eng Biotechnol. 2017 Mar 14. doi: 10.1007/10_2016_53. [Epub ahead of print]

PMID:
28289769
6.

Transgenic Expression of the Formin Protein Fhod3 Selectively in the Embryonic Heart: Role of Actin-Binding Activity of Fhod3 and Its Sarcomeric Localization during Myofibrillogenesis.

Fujimoto N, Kan-O M, Ushijima T, Kage Y, Tominaga R, Sumimoto H, Takeya R.

PLoS One. 2016 Feb 5;11(2):e0148472. doi: 10.1371/journal.pone.0148472. eCollection 2016.

7.

Object-based spatial attention when objects have sufficient depth cues.

Takeya R, Kasai T.

J Vis. 2015;15(13):16. doi: 10.1167/15.13.16.

PMID:
26382007
8.

[Role-play for pharmacology education: active learning through the Case & Communication based approach].

Yanagita T, Nemoto T, Takeya R.

Nihon Yakurigaku Zasshi. 2015 Aug;146(2):115-8. doi: 10.1254/fpj.146.115. Japanese. No abstract available.

PMID:
26256750
9.

Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases.

Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H, Sumimoto H.

J Biol Chem. 2015 Mar 6;290(10):6003. doi: 10.1074/jbc.A114.212856. No abstract available.

10.

Emergence of visual objects involves multiple stages of spatial selection.

Kasai T, Takeya R, Tanaka S.

Atten Percept Psychophys. 2015 Feb;77(2):441-9. doi: 10.3758/s13414-014-0799-8.

PMID:
25425226
11.

[Role of connectedness in early object-based attentional selection].

Takeya R, Kasai T.

Shinrigaku Kenkyu. 2014 Aug;85(3):276-83. Japanese.

PMID:
25272445
12.

Dilated cardiomyopathy-associated FHOD3 variant impairs the ability to induce activation of transcription factor serum response factor.

Arimura T, Takeya R, Ishikawa T, Yamano T, Matsuo A, Tatsumi T, Nomura T, Sumimoto H, Kimura A.

Circ J. 2013;77(12):2990-6. Epub 2013 Oct 1.

13.

Phosphorylation of Noxo1 at threonine 341 regulates its interaction with Noxa1 and the superoxide-producing activity of Nox1.

Yamamoto A, Takeya R, Matsumoto M, Nakayama KI, Sumimoto H.

FEBS J. 2013 Oct;280(20):5145-59. doi: 10.1111/febs.12489. Epub 2013 Sep 12.

14.

Mammalian formin Fhod3 plays an essential role in cardiogenesis by organizing myofibrillogenesis.

Kan-O M, Takeya R, Abe T, Kitajima N, Nishida M, Tominaga R, Kurose H, Sumimoto H.

Biol Open. 2012 Sep 15;1(9):889-96. doi: 10.1242/bio.20121370. Epub 2012 Jul 18.

15.

High cell-autonomy of the anterior endomesoderm viewed in blastomere fate shift during regulative development in the isolated right halves of four-cell stage Xenopus embryos.

Koga M, Nakashima T, Matsuo S, Takeya R, Sumimoto H, Sakai M, Kageura H.

Dev Growth Differ. 2012 Sep;54(7):717-29. doi: 10.1111/j.1440-169X.2012.01372.x.

PMID:
22994797
16.

Time course of spatial and feature selective attention for partly-occluded objects.

Kasai T, Takeya R.

Neuropsychologia. 2012 Jul;50(9):2281-9. doi: 10.1016/j.neuropsychologia.2012.05.032. Epub 2012 Jun 7.

PMID:
22683447
17.

Expression and subcellular localization of mammalian formin Fhod3 in the embryonic and adult heart.

Kan-o M, Takeya R, Taniguchi K, Tanoue Y, Tominaga R, Sumimoto H.

PLoS One. 2012;7(4):e34765. doi: 10.1371/journal.pone.0034765. Epub 2012 Apr 11.

18.

A conserved region between the TPR and activation domains of p67phox participates in activation of the phagocyte NADPH oxidase.

Maehara Y, Miyano K, Yuzawa S, Akimoto R, Takeya R, Sumimoto H.

J Biol Chem. 2010 Oct 8;285(41):31435-45. doi: 10.1074/jbc.M110.161166. Epub 2010 Aug 2.

19.

Manufacturing recombinant adeno-associated viral vectors from producer cell clones.

Thorne BA, Takeya RK, Peluso RW.

Hum Gene Ther. 2009 Jul;20(7):707-14. doi: 10.1089/hum.2009.070. Review.

PMID:
19848592
20.

Mammalian formin fhod3 regulates actin assembly and sarcomere organization in striated muscles.

Taniguchi K, Takeya R, Suetsugu S, Kan-O M, Narusawa M, Shiose A, Tominaga R, Sumimoto H.

J Biol Chem. 2009 Oct 23;284(43):29873-81. doi: 10.1074/jbc.M109.059303. Epub 2009 Aug 25.

21.

A region N-terminal to the tandem SH3 domain of p47phox plays a crucial role in the activation of the phagocyte NADPH oxidase.

Taura M, Miyano K, Minakami R, Kamakura S, Takeya R, Sumimoto H.

Biochem J. 2009 Apr 15;419(2):329-38. doi: 10.1042/BJ20082028.

PMID:
19090790
22.

Enhanced expression of NADPH oxidase Nox4 in human gliomas and its roles in cell proliferation and survival.

Shono T, Yokoyama N, Uesaka T, Kuroda J, Takeya R, Yamasaki T, Amano T, Mizoguchi M, Suzuki SO, Niiro H, Miyamoto K, Akashi K, Iwaki T, Sumimoto H, Sasaki T.

Int J Cancer. 2008 Aug 15;123(4):787-92. doi: 10.1002/ijc.23569.

23.

The mammalian formin FHOD1 is activated through phosphorylation by ROCK and mediates thrombin-induced stress fibre formation in endothelial cells.

Takeya R, Taniguchi K, Narumiya S, Sumimoto H.

EMBO J. 2008 Feb 20;27(4):618-28. doi: 10.1038/emboj.2008.7. Epub 2008 Jan 31.

24.

Characterizing clearance of helper adenovirus by a clinical rAAV1 manufacturing process.

Thorne BA, Quigley P, Nichols G, Moore C, Pastor E, Price D, Ament JW, Takeya RK, Peluso RW.

Biologicals. 2008 Jan;36(1):7-18. Epub 2007 Jul 19.

PMID:
17644406
25.

Full-length p40phox structure suggests a basis for regulation mechanism of its membrane binding.

Honbou K, Minakami R, Yuzawa S, Takeya R, Suzuki NN, Kamakura S, Sumimoto H, Inagaki F.

EMBO J. 2007 Feb 21;26(4):1176-86. Epub 2007 Feb 8.

26.

Interaction between the SH3 domains and C-terminal proline-rich region in NADPH oxidase organizer 1 (Noxo1).

Yamamoto A, Kami K, Takeya R, Sumimoto H.

Biochem Biophys Res Commun. 2007 Jan 12;352(2):560-5. Epub 2006 Nov 20.

PMID:
17126813
27.

Regulation of novel superoxide-producing NAD(P)H oxidases.

Takeya R, Sumimoto H.

Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1523-32. Review.

PMID:
16987008
28.

Expression of isoforms of NADPH oxidase components in rat pancreatic islets.

Uchizono Y, Takeya R, Iwase M, Sasaki N, Oku M, Imoto H, Iida M, Sumimoto H.

Life Sci. 2006 Dec 14;80(2):133-9. Epub 2006 Sep 1.

PMID:
16979190
29.

Expression and function of Noxo1gamma, an alternative splicing form of the NADPH oxidase organizer 1.

Takeya R, Taura M, Yamasaki T, Naito S, Sumimoto H.

FEBS J. 2006 Aug;273(16):3663-77.

30.

Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1.

Miyano K, Ueno N, Takeya R, Sumimoto H.

J Biol Chem. 2006 Aug 4;281(31):21857-68. Epub 2006 Jun 8.

31.

Regulation of superoxide-producing NADPH oxidases in nonphagocytic cells.

Takeya R, Ueno N, Sumimoto H.

Methods Enzymol. 2006;406:456-68.

PMID:
16472678
33.

[Phagocytosis and killing of microorganisms].

Minakami R, Takeya R, Sumimoto H.

Tanpakushitsu Kakusan Koso. 2006 Feb;51(2):109-17. Review. Japanese. No abstract available.

PMID:
16457201
34.

PDIP38 associates with proteins constituting the mitochondrial DNA nucleoid.

Cheng X, Kanki T, Fukuoh A, Ohgaki K, Takeya R, Aoki Y, Hamasaki N, Kang D.

J Biochem. 2005 Dec;138(6):673-8.

PMID:
16428295
35.

NMR solution structure of the tandem Src homology 3 domains of p47phox complexed with a p22phox-derived proline-rich peptide.

Ogura K, Nobuhisa I, Yuzawa S, Takeya R, Torikai S, Saikawa K, Sumimoto H, Inagaki F.

J Biol Chem. 2006 Feb 10;281(6):3660-8. Epub 2005 Dec 2.

36.

The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells.

Kuroda J, Nakagawa K, Yamasaki T, Nakamura K, Takeya R, Kuribayashi F, Imajoh-Ohmi S, Igarashi K, Shibata Y, Sueishi K, Sumimoto H.

Genes Cells. 2005 Dec;10(12):1139-51.

37.

A region C-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox.

Mizuki K, Takeya R, Kuribayashi F, Nobuhisa I, Kohda D, Nunoi H, Takeshige K, Sumimoto H.

Arch Biochem Biophys. 2005 Dec 15;444(2):185-94. Epub 2005 Nov 2.

PMID:
16297854
38.

Molecular composition and regulation of the Nox family NAD(P)H oxidases.

Sumimoto H, Miyano K, Takeya R.

Biochem Biophys Res Commun. 2005 Dec 9;338(1):677-86. Epub 2005 Sep 6. Review.

PMID:
16157295
39.

Isoform-specific membrane targeting mechanism of Rac during Fc gamma R-mediated phagocytosis: positive charge-dependent and independent targeting mechanism of Rac to the phagosome.

Ueyama T, Eto M, Kami K, Tatsuno T, Kobayashi T, Shirai Y, Lennartz MR, Takeya R, Sumimoto H, Saito N.

J Immunol. 2005 Aug 15;175(4):2381-90.

40.

Fhos2, a novel formin-related actin-organizing protein, probably associates with the nestin intermediate filament.

Kanaya H, Takeya R, Takeuchi K, Watanabe N, Jing N, Sumimoto H.

Genes Cells. 2005 Jul;10(7):665-78.

41.

The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators.

Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H.

J Biol Chem. 2005 Jun 17;280(24):23328-39. Epub 2005 Apr 11.

42.

Safety characterization of HeLa-based cell substrates used in the manufacture of a recombinant adeno-associated virus-HIV vaccine.

Tatalick LM, Gerard CJ, Takeya R, Price DN, Thorne BA, Wyatt LM, Anklesaria P.

Vaccine. 2005 Apr 8;23(20):2628-38.

PMID:
15780446
43.

Structure of a cell polarity regulator, a complex between atypical PKC and Par6 PB1 domains.

Hirano Y, Yoshinaga S, Takeya R, Suzuki NN, Horiuchi M, Kohjima M, Sumimoto H, Inagaki F.

J Biol Chem. 2005 Mar 11;280(10):9653-61. Epub 2004 Dec 7.

44.

On the mechanism of cell lysis by deformation.

Takamatsu H, Takeya R, Naito S, Sumimoto H.

J Biomech. 2005 Jan;38(1):117-24.

PMID:
15519346
45.

Molecular mechanism underlying activation of superoxide-producing NADPH oxidases: roles for their regulatory proteins.

Sumimoto H, Ueno N, Yamasaki T, Taura M, Takeya R.

Jpn J Infect Dis. 2004 Oct;57(5):S24-5.

46.

Helicobacter pylori lipopolysaccharide activates Rac1 and transcription of NADPH oxidase Nox1 and its organizer NOXO1 in guinea pig gastric mucosal cells.

Kawahara T, Kohjima M, Kuwano Y, Mino H, Teshima-Kondo S, Takeya R, Tsunawaki S, Wada A, Sumimoto H, Rokutan K.

Am J Physiol Cell Physiol. 2005 Feb;288(2):C450-7. Epub 2004 Oct 6.

47.

Identification of a novel type 1 diabetes susceptibility gene, T-bet.

Sasaki Y, Ihara K, Matsuura N, Kohno H, Nagafuchi S, Kuromaru R, Kusuhara K, Takeya R, Hoey T, Sumimoto H, Hara T.

Hum Genet. 2004 Aug;115(3):177-84. Epub 2004 Jul 6.

PMID:
15241679
48.

Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to Toll-like receptor 5 signaling in large intestinal epithelial cells.

Kawahara T, Kuwano Y, Teshima-Kondo S, Takeya R, Sumimoto H, Kishi K, Tsunawaki S, Hirayama T, Rokutan K.

J Immunol. 2004 Mar 1;172(5):3051-8.

49.

Molecular mechanism for activation of superoxide-producing NADPH oxidases.

Takeya R, Sumimoto H.

Mol Cells. 2003 Dec 31;16(3):271-7. Review.

Supplemental Content

Loading ...
Support Center