Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 89

1.

Brachytic 1 of barley (Hordeum vulgare L.) encodes the α subunit of heterotrimeric G protein.

Ito A, Yasuda A, Yamaoka K, Ueda M, Nakayama A, Takatsuto S, Honda I.

J Plant Physiol. 2017 Jun;213:209-215. doi: 10.1016/j.jplph.2017.03.010. Epub 2017 Mar 23.

PMID:
28412605
2.

Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice.

Liu JM, Park SJ, Huang J, Lee EJ, Xuan YH, Je BI, Kumar V, Priatama RA, Raj K V, Kim SH, Min MK, Cho JH, Kim TH, Chandran AK, Jung KH, Takatsuto S, Fujioka S, Han CD.

J Exp Bot. 2016 Mar;67(6):1883-95. doi: 10.1093/jxb/erw002. Epub 2016 Jan 29.

3.

Constitutive activation of brassinosteroid signaling in the Arabidopsis elongated-D/bak1 mutant.

Chung Y, Choe V, Fujioka S, Takatsuto S, Han M, Jeon JS, Park YI, Lee KO, Choe S.

Plant Mol Biol. 2012 Nov;80(4-5):489-501. doi: 10.1007/s11103-012-9963-5. Epub 2012 Sep 8.

PMID:
22961663
4.

Overexpression of 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases causes growth defects possibly due to abnormal auxin transport in Arabidopsis.

Kim B, Kim G, Fujioka S, Takatsuto S, Choe S.

Mol Cells. 2012 Jul;34(1):77-84. doi: 10.1007/s10059-012-0102-6. Epub 2012 Jun 4.

5.

Rice CYP734As function as multisubstrate and multifunctional enzymes in brassinosteroid catabolism.

Sakamoto T, Kawabe A, Tokida-Segawa A, Shimizu B, Takatsuto S, Shimada Y, Fujioka S, Mizutani M.

Plant J. 2011 Jul;67(1):1-12. doi: 10.1111/j.1365-313X.2011.04567.x. Epub 2011 Apr 26.

6.

Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis.

Chung Y, Maharjan PM, Lee O, Fujioka S, Jang S, Kim B, Takatsuto S, Tsujimoto M, Kim H, Cho S, Park T, Cho H, Hwang I, Choe S.

Plant J. 2011 May;66(4):564-78. doi: 10.1111/j.1365-313X.2011.04513.x. Epub 2011 Apr 4.

7.

Involvement of C-22-hydroxylated brassinosteroids in auxin-induced lamina joint bending in rice.

Nakamura A, Fujioka S, Takatsuto S, Tsujimoto M, Kitano H, Yoshida S, Asami T, Nakano T.

Plant Cell Physiol. 2009 Sep;50(9):1627-35. doi: 10.1093/pcp/pcp106. Epub 2009 Jul 15.

PMID:
19605414
8.

Brassinosteroids regulate grain filling in rice.

Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI.

Plant Cell. 2008 Aug;20(8):2130-45. doi: 10.1105/tpc.107.055087. Epub 2008 Aug 15.

9.

Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice.

Kim BK, Fujioka S, Takatsuto S, Tsujimoto M, Choe S.

Biochem Biophys Res Commun. 2008 Oct 3;374(4):614-9. doi: 10.1016/j.bbrc.2008.07.073. Epub 2008 Jul 24.

PMID:
18656444
10.

The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access.

Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y.

Plant J. 2008 Aug;55(3):526-42. doi: 10.1111/j.0960-7412.2008.03510.x.

11.

Brz220 interacts with DWF4, a cytochrome P450 monooxygenase in brassinosteroid biosynthesis, and exerts biological activity.

Sekimata K, Ohnishi T, Mizutani M, Todoroki Y, Han SY, Uzawa J, Fujioka S, Yoneyama K, Takeuchi Y, Takatsuto S, Sakata K, Yoshida S, Asami T.

Biosci Biotechnol Biochem. 2008 Jan;72(1):7-12. Epub 2008 Jan 7.

12.

BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana.

Yuan T, Fujioka S, Takatsuto S, Matsumoto S, Gou X, He K, Russell SD, Li J.

Plant J. 2007 Jul;51(2):220-33. Epub 2007 May 23.

13.

Roles of brassinosteroids and related mRNAs in pea seed growth and germination.

Nomura T, Ueno M, Yamada Y, Takatsuto S, Takeuchi Y, Yokota T.

Plant Physiol. 2007 Apr;143(4):1680-8. Epub 2007 Feb 23.

14.

Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation.

Yamamoto R, Fujioka S, Iwamoto K, Demura T, Takatsuto S, Yoshida S, Fukuda H.

Plant Cell Physiol. 2007 Jan;48(1):74-83. Epub 2006 Nov 27.

PMID:
17132633
15.

The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis.

Shimada A, Ueguchi-Tanaka M, Sakamoto T, Fujioka S, Takatsuto S, Yoshida S, Sazuka T, Ashikari M, Matsuoka M.

Plant J. 2006 Nov;48(3):390-402.

16.

Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols.

Fujita S, Ohnishi T, Watanabe B, Yokota T, Takatsuto S, Fujioka S, Yoshida S, Sakata K, Mizutani M.

Plant J. 2006 Mar;45(5):765-74.

17.

The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis.

Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS, Lee I, Hwang I, Choe S.

Plant Physiol. 2006 Feb;140(2):548-57. Epub 2006 Jan 11.

18.

The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice.

Nakamura A, Fujioka S, Sunohara H, Kamiya N, Hong Z, Inukai Y, Miura K, Takatsuto S, Yoshida S, Ueguchi-Tanaka M, Hasegawa Y, Kitano H, Matsuoka M.

Plant Physiol. 2006 Feb;140(2):580-90. Epub 2006 Jan 11.

19.

Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice.

Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M.

Nat Biotechnol. 2006 Jan;24(1):105-9. Epub 2005 Dec 20.

PMID:
16369540
20.

The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids.

Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S, Bowles D.

Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15253-8. Epub 2005 Oct 7.

21.

Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis.

Kim TW, Hwang JY, Kim YS, Joo SH, Chang SC, Lee JS, Takatsuto S, Kim SK.

Plant Cell. 2005 Aug;17(8):2397-412. Epub 2005 Jul 15.

22.

The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone.

Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M.

Plant Cell. 2005 Aug;17(8):2243-54. Epub 2005 Jul 1.

23.

BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms.

Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM.

Plant J. 2005 Apr;42(1):23-34.

24.

A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length.

Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y.

Plant Cell. 2005 Mar;17(3):776-90. Epub 2005 Feb 10.

25.

CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana.

Kim GT, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S, Tsukaya H.

Plant J. 2005 Mar;41(5):710-21.

26.

Brassinosteroid deficiency due to truncated steroid 5alpha-reductase causes dwarfism in the lk mutant of pea.

Nomura T, Jager CE, Kitasaka Y, Takeuchi K, Fukami M, Yoneyama K, Matsushita Y, Nyunoya H, Takatsuto S, Fujioka S, Smith JJ, Kerckhoffs LH, Reid JB, Yokota T.

Plant Physiol. 2004 Aug;135(4):2220-9. Epub 2004 Jul 30.

27.

A mammalian steroid action inhibitor spironolactone retards plant growth by inhibition of brassinosteroid action and induces light-induced gene expression in the dark.

Asami T, Oh K, Jikumaru Y, Shimada Y, Kaneko I, Nakano T, Takatsuto S, Fujioka S, Yoshida S.

J Steroid Biochem Mol Biol. 2004 Jun;91(1-2):41-7.

PMID:
15261306
28.

Novel biosynthetic pathway of castasterone from cholesterol in tomato.

Kim TW, Chang SC, Lee JS, Takatsuto S, Yokota T, Kim SK.

Plant Physiol. 2004 Jul;135(3):1231-42. Epub 2004 Jul 9.

29.

A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis.

Schrick K, Fujioka S, Takatsuto S, Stierhof YD, Stransky H, Yoshida S, Jürgens G.

Plant J. 2004 Apr;38(2):227-43. Erratum in: Plant J. 2004 May;38(3): 562.

30.

Cytochrome P450-catalyzed brassinosteroid pathway activation through synthesis of castasterone and brassinolide in Phaseolus vulgaris.

Kim TW, Chang SC, Lee JS, Hwang B, Takatsuto S, Yokota T, Kim SK.

Phytochemistry. 2004 Mar;65(6):679-89.

PMID:
15016564
31.

A dwarf mutant strain of Pharbitis nil, Uzukobito (kobito), has defective brassinosteroid biosynthesis.

Suzuki Y, Saso K, Fujioka S, Yoshida S, Nitasaka E, Nagata S, Nagasawa H, Takatsuto S, Yamaguchi I.

Plant J. 2003 Nov;36(3):401-10.

32.

A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450.

Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M.

Plant Cell. 2003 Dec;15(12):2900-10. Epub 2003 Nov 13.

33.

CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction.

Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres QI, Neff MM.

Plant Physiol. 2003 Dec;133(4):1643-53. Epub 2003 Nov 6.

34.

A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor.

Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T, Watanabe Y.

Plant Physiol. 2003 Nov;133(3):1209-19. Epub 2003 Oct 9.

35.

Sterols regulate development and gene expression in Arabidopsis.

He JX, Fujioka S, Li TC, Kang SG, Seto H, Takatsuto S, Yoshida S, Jang JC.

Plant Physiol. 2003 Mar;131(3):1258-69.

36.

Brassinosteroid functions in a broad range of disease resistance in tobacco and rice.

Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S.

Plant J. 2003 Mar;33(5):887-98.

37.

Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis.

Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S.

Plant Physiol. 2003 Jan;131(1):287-97.

38.

Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem.

Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M.

Plant J. 2002 Nov;32(4):495-508.

39.

Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3beta-like kinase.

Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE.

Plant Physiol. 2002 Nov;130(3):1506-15.

40.

An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway.

Fujioka S, Takatsuto S, Yoshida S.

Plant Physiol. 2002 Oct;130(2):930-9.

41.

Triadimefon, a fungicidal triazole-type P450 inhibitor, induces brassinosteroid deficiency-like phenotypes in plants and binds to DWF4 protein in the brassinosteroid biosynthesis pathway.

Asami T, Mizutani M, Shimada Y, Goda H, Kitahata N, Sekimata K, Han SY, Fujioka S, Takatsuto S, Sakata K, Yoshida S.

Biochem J. 2003 Jan 1;369(Pt 1):71-6.

42.

The identification of CVP1 reveals a role for sterols in vascular patterning.

Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T.

Plant Cell. 2002 Sep;14(9):2045-58.

43.

Biosynthesis of cholestanol in higher plants.

Nakajima N, Fujioka S, Tanaka T, Takatsuto S, Yoshida S.

Phytochemistry. 2002 Jun;60(3):275-9.

PMID:
12031446
44.

Synthesis and biological activity of 26-norbrassinolide, 26-norcastasterone and 26-nor-6-deoxocastasterone.

Watanabe T, Noguchi T, Yokota T, Shibata K, Koshino H, Seto H, Kim S, Takatsuto S.

Phytochemistry. 2001 Sep;58(2):343-9.

PMID:
11551562
45.

Roots and shoots of tomato produce 6-deoxo-28-norcathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone.

Yokota T, Sato T, Takeuchi Y, Nomura T, Uno K, Watanabe T, Takatsuto S.

Phytochemistry. 2001 Sep;58(2):233-8.

PMID:
11551544
46.

Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis.

Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA.

Plant J. 2001 Jun;26(6):573-82.

47.

Obtusifoliol 14alpha-demethylase (CYP51) antisense Arabidopsis shows slow growth and long life.

Kushiro M, Nakano T, Sato K, Yamagishi K, Asami T, Nakano A, Takatsuto S, Fujioka S, Ebizuka Y, Yoshida S.

Biochem Biophys Res Commun. 2001 Jul 6;285(1):98-104.

PMID:
11437378
48.

Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis.

Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S.

Plant Physiol. 2001 Jun;126(2):770-9.

49.

Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth.

Kang JG, Yun J, Kim DH, Chung KS, Fujioka S, Kim JI, Dae HW, Yoshida S, Takatsuto S, Song PS, Park CM.

Cell. 2001 Jun 1;105(5):625-36.

50.

Supplemental Content

Loading ...
Support Center