Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16750-16759. doi: 10.1073/pnas.1907571116. Epub 2019 Jul 26.

Airborne concentrations and chemical considerations of radioactive ruthenium from an undeclared major nuclear release in 2017.

Author information

1
Direction de l'Environnement, Institut de Radioprotection et de Sûreté Nucléaire, 13115 St Paul lez Durance, France; olivier.masson@irsn.fr steinhauser@irs.uni-hannover.de.
2
Institute of Radioecology and Radiation Protection, Leibniz Universität Hannover, 30419 Hannover, Germany; olivier.masson@irsn.fr steinhauser@irs.uni-hannover.de.
3
Institute of Radioecology and Radiation Protection, Leibniz Universität Hannover, 30419 Hannover, Germany.
4
Service des Situations d'Urgence et d'Organisation de Crise, Institut de Radioprotection et de Sûreté Nucléaire, 92260 Fontenay-Aux-Roses, France.
5
Basic Environmental Observatory Moussala, Institute for Nuclear Research and Nuclear Energy, BG-1784 Sofia, Bulgaria.
6
Institute for Medical Research and Occupational Health, 10001 Zagreb, Croatia.
7
Section of Monitoring, National Radiation Protection Institute, 140 00 Prague 4, Czech Republic.
8
Atmosphärische Radioaktivität und Spurenanalyse, Bundesamt für Strahlenschutz, 79098 Freiburg im Breisgau, Germany.
9
StudieCentrum voor Kernenergie-Centre d'Etude de l'Energie Nucléaire, 2400 Mol, Belgium.
10
Office of Radiation Protection and Environmental Monitoring, Environmental Protection Agency, Dublin, D14 H424, Ireland.
11
Observatoire Pérenne de l'Environnement, Agence Nationale des Déchets Radioactifs, 55290 Bure, France.
12
Deutscher Wetterdienst, 63067 Offenbach, Germany.
13
Chemical, Biological, Radiological and Nuclear Defence and Security Division, Swedish Defence Research Agency, 16490 Stockholm, Sweden.
14
Laboratoire de Mesure de la Radioactivité dans l'Environnement, Institut de Radioprotection et de Sûreté, 91400 Orsay, France.
15
Institute of Nuclear and Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", 15310 Athens, Greece.
16
Environmental Radioactivity Section, Federal Office of Public Health, CH-3097 Liebefeld, Switzerland.
17
Radioactivity Measurements Laboratory, University of Bremen, 28359 Bremen, Germany.
18
Dipartimento Prevenzione, Agenzia Regionale per la Protezione dell'Ambiente del Friuli Venezia Giulia, 33100 Udine, Italy.
19
Unidad de Radiactividad Ambiental y Vigilancia Radiológica, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040 Madrid, Spain.
20
Department of Nuclear Physical Chemistry, The Henryk Niewodniczanski Institute of Nuclear Physics, 31-342 Kraków, Poland.
21
Atominstitut, Vienna University of Technology, 1020 Vienna, Austria.
22
Health Canada, Ottawa, K1A 1C1 ON, Canada.
23
Central Laboratory for Radiological Protection, PL 03-134 Warsaw, Poland.
24
Environmental Monitoring, Radiation and Nuclear Safety Authority, FI-00881 Helsinki, Finland.
25
Department of Radiation Protection and Technical Quality Assurance, Austrian Agency for Health and Food Safety, 1220 Vienna, Austria.
26
Centre for Environmental Safety and Security, National Institute for Public Health and the Environment, NL-3720 BA Bilthoven, The Netherlands.
27
Division of Environmental and Public Radiohygiene, National Research Institute for Radiobiology and Radiohygiene, H-1221 Budapest, Hungary.
28
Division de la Radioprotection, Ministère de la Santé, L-2120 Luxembourg, Luxembourg.
29
National Commission for Nuclear Activities Control, District 5, 050706 Bucharest, Romania.
30
Emergency Preparedness and Response, Norwegian Radiation and Nuclear Safety Authority, NO-9925 Svanvik, Norway.
31
Center for Nuclear Technologies, Technical University of Denmark (DTU) Risø, DK-4000 Roskilde, Denmark.
32
Department of Radiation and Environmental Protection, Institute for Nuclear Sciences, University of Belgrade, 11351 Belgrade, Serbia.
33
Radiology Laboratories, Institute of Public Health, 1000 Skopje, North Macedonia.
34
Department of Nuclear Physics and Biophysics, Comenius University, 84248 Bratislava, Slovakia.
35
Tutela dell'Ambiente Naturale e Costruito, Dipartimento Prevenzione, 47893 Borgo Maggiore, Republic of San Marino.
36
Computing Centre, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany.
37
Department of Radon and Radioecology, Austrian Agency for Health and Food Safety, 4020 Linz, Austria.
38
Rivne Nuclear Power Plant, National Nuclear Energy Generating Company "Energoatom", 34400 Rivne Oblast, Ukraine.
39
Centro Regionale Radioprotezione, Agenzia Regionale per la Protezione dell'Ambiente della Lombardia, 20124 Milan, Italy.
40
Republican Center of Hydrometeorology, Radioactive Contamination Control and Environmental Monitoring, 220114 Minsk, Belarus.
41
Environmental Protection Agency, 09311 Vilnius, Lithuania.
42
National Reference Laboratory, National Environmental Protection Agency, 060031 Bucharest, Romania.
43
Ukrainian Hydrometeorological Center, 01601 Kyiv, Ukraine.
44
Institute of Radiation Medicine, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
45
Safety Department, Kozloduy Nuclear Power Plant, 3321 Kozloduy, Bulgaria.
46
Radiation Inspection and Control Services, Department of Labour Inspection, CY-1080 Nicosia, Cyprus.
47
Radiation Protection Center, Institute for Public Health, 71000 Sarajevo, Federation of Bosnia and Herzegovina.
48
Environmental Radioactivity Laboratory, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany.
49
Centre for Energy Research, Hungarian Academy of Sciences, 1121 Budapest, Hungary.
50
Institute of Meteorology and Water Management, National Research Institute, 01673 Warsaw, Poland.
51
Infrastructural Group for Ionizing Radiation Measurements, Institut "Jožef Stefan", 1000 Ljubljana, Slovenia.

Abstract

In October 2017, most European countries reported unique atmospheric detections of aerosol-bound radioruthenium (106Ru). The range of concentrations varied from some tenths of µBq·m-3 to more than 150 mBq·m-3 The widespread detection at such considerable (yet innocuous) levels suggested a considerable release. To compare activity reports of airborne 106Ru with different sampling periods, concentrations were reconstructed based on the most probable plume presence duration at each location. Based on airborne concentration spreading and chemical considerations, it is possible to assume that the release occurred in the Southern Urals region (Russian Federation). The 106Ru age was estimated to be about 2 years. It exhibited highly soluble and less soluble fractions in aqueous media, high radiopurity (lack of concomitant radionuclides), and volatility between 700 and 1,000 °C, thus suggesting a release at an advanced stage in the reprocessing of nuclear fuel. The amount and isotopic characteristics of the radioruthenium release may indicate a context with the production of a large 144Ce source for a neutrino experiment.

KEYWORDS:

accidental release; environmental radioactivity; environmental release; nuclear forensics; ruthenium

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center