Sort by

Send to

Choose Destination

Search results

Items: 5


Development of colorimetric sensor array for diagnosis of tuberculosis through detection of urinary volatile organic compounds.

Sandlund J, Lim S, Queralto N, Huang R, Yun J, Taba B, Song R, Odero R, Ouma G, Sitati R, Murithi W, Cain KP, Banaei N.

Diagn Microbiol Infect Dis. 2018 Jun 22. pii: S0732-8893(18)30213-X. doi: 10.1016/j.diagmicrobio.2018.06.014. [Epub ahead of print]


Convolutional networks for fast, energy-efficient neuromorphic computing.

Esser SK, Merolla PA, Arthur JV, Cassidy AS, Appuswamy R, Andreopoulos A, Berg DJ, McKinstry JL, Melano T, Barch DR, di Nolfo C, Datta P, Amir A, Taba B, Flickner MD, Modha DS.

Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11441-11446. Epub 2016 Sep 20.


Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface.

Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser SK, Appuswamy R, Taba B, Amir A, Flickner MD, Risk WP, Manohar R, Modha DS.

Science. 2014 Aug 8;345(6197):668-73. doi: 10.1126/science.1254642. Epub 2014 Aug 7.


Colorimetric sensor array allows fast detection and simultaneous identification of sepsis-causing bacteria in spiked blood culture.

Lim SH, Mix S, Xu Z, Taba B, Budvytiene I, Berliner AN, Queralto N, Churi YS, Huang RS, Eiden M, Martino RA, Rhodes P, Banaei N.

J Clin Microbiol. 2014 Feb;52(2):592-8. doi: 10.1128/JCM.02377-13. Epub 2013 Dec 11.


The use of colorimetric sensor arrays to discriminate between pathogenic bacteria.

Lonsdale CL, Taba B, Queralto N, Lukaszewski RA, Martino RA, Rhodes PA, Lim SH.

PLoS One. 2013 May 9;8(5):e62726. doi: 10.1371/journal.pone.0062726. Print 2013.

Supplemental Content

Support Center