Format
Sort by
Items per page

Send to

Choose Destination

Best matches for Tél T[au]:

Death and revival of chaos. Kaszás B et al. Phys Rev E. (2016)

Leaking in history space: A way to analyze systems subjected to arbitrary driving. Kaszás B et al. Chaos. (2018)

The theory of parallel climate realizations as a new framework for teleconnection analysis. Herein M et al. Sci Rep. (2017)

Search results

Items: 1 to 50 of 89

1.

Leaking in history space: A way to analyze systems subjected to arbitrary driving.

Kaszás B, Feudel U, Tél T.

Chaos. 2018 Mar;28(3):033612. doi: 10.1063/1.5013336.

PMID:
29604633
2.

The theory of parallel climate realizations as a new framework for teleconnection analysis.

Herein M, Drótos G, Haszpra T, Márfy J, Tél T.

Sci Rep. 2017 Mar 23;7:44529. doi: 10.1038/srep44529.

3.

Death and revival of chaos.

Kaszás B, Feudel U, Tél T.

Phys Rev E. 2016 Dec;94(6-1):062221. doi: 10.1103/PhysRevE.94.062221. Epub 2016 Dec 28.

PMID:
28085470
4.

Quantifying nonergodicity in nonautonomous dissipative dynamical systems: An application to climate change.

Drótos G, Bódai T, Tél T.

Phys Rev E. 2016 Aug;94(2-1):022214. doi: 10.1103/PhysRevE.94.022214. Epub 2016 Aug 24.

PMID:
27627305
5.

The joy of transient chaos.

Tél T.

Chaos. 2015 Sep;25(9):097619. doi: 10.1063/1.4917287.

PMID:
26428572
6.

Asymptotic observability of low-dimensional powder chaos in a three-degrees-of-freedom scattering system.

Drótos G, González Montoya F, Jung C, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):022906. Epub 2014 Aug 12.

PMID:
25215798
7.

Chaotic motion of light particles in an unsteady three-dimensional vortex: experiments and simulation.

Vanyó J, Vincze M, Jánosi IM, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):013002. Epub 2014 Jul 8.

PMID:
25122364
8.

Doubly transient chaos: generic form of chaos in autonomous dissipative systems.

Motter AE, Gruiz M, Károlyi G, Tél T.

Phys Rev Lett. 2013 Nov 8;111(19):194101. Epub 2013 Nov 7.

PMID:
24266475
9.

Influence of the history force on inertial particle advection: gravitational effects and horizontal diffusion.

Guseva K, Feudel U, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042909. Epub 2013 Oct 17.

PMID:
24229251
10.

Chaotic systems with absorption.

Altmann EG, Portela JS, Tél T.

Phys Rev Lett. 2013 Oct 4;111(14):144101. Epub 2013 Sep 30.

PMID:
24138240
11.

Modulated point-vortex pairs on a rotating sphere: dynamics and chaotic advection.

Drótos G, Tél T, Kovács G.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):063017. Epub 2013 Jun 27.

PMID:
23848782
12.

Chaos on the conveyor belt.

Sándor B, Járai-Szabó F, Tél T, Néda Z.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042920. Epub 2013 Apr 23.

PMID:
23679502
13.

Driving a conceptual model climate by different processes: snapshot attractors and extreme events.

Bódai T, Károlyi G, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022822. Epub 2013 Feb 28.

PMID:
23496583
14.

When is high-dimensional scattering chaos essentially two dimensional? Measuring the product structure of singularities.

Drótos G, Jung C, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056210. Epub 2012 Nov 16.

PMID:
23214860
15.
16.

Memory effects are relevant for chaotic advection of inertial particles.

Daitche A, Tél T.

Phys Rev Lett. 2011 Dec 9;107(24):244501. Epub 2011 Dec 5.

PMID:
22243003
17.

Chaotic saddles in a gravitational field: the case of inertial particles in finite domains.

Drótos G, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056203. Epub 2011 May 3.

PMID:
21728626
18.

Fractal snapshot components in chaos induced by strong noise.

Bódai T, Károlyi G, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046201. Epub 2011 Apr 1.

PMID:
21599264
19.

Dynamics of passive tracers in the atmosphere: laboratory experiments and numerical tests with reanalysis wind fields.

Jánosi IM, Kiss P, Homonnai V, Pattantyús-Ábrahám M, Gyüre B, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 2):046308. Epub 2010 Oct 21.

PMID:
21230391
20.

Quasipotential approach to critical scaling in noise-induced chaos.

Tél T, Lai YC.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 2):056208. Epub 2010 May 19.

PMID:
20866308
21.

Coagulation and fragmentation dynamics of inertial particles.

Zahnow JC, Vilela RD, Feudel U, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):026311. Epub 2009 Aug 19.

PMID:
19792253
22.

Dynamics of blinking vortices.

Daitche A, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 2):016210. Epub 2009 Jan 20.

PMID:
19257125
23.

Poincaré recurrences and transient chaos in systems with leaks.

Altmann EG, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 2):016204. Epub 2009 Jan 16.

PMID:
19257119
24.

Finite-size particles, advection, and chaos: a collective phenomenon of intermittent bursting.

Medrano-T RO, Moura A, Tél T, Caldas IL, Grebogi C.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Nov;78(5 Pt 2):056206. Epub 2008 Nov 12. Erratum in: Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 2):069901.

PMID:
19113199
25.

Dynamics of tidal synchronization and orbit circularization of celestial bodies.

Escribano B, Vanyo J, Tuval I, Cartwright JH, González DL, Piro O, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 2):036216. Epub 2008 Sep 18.

PMID:
18851130
26.

Aggregation and fragmentation dynamics of inertial particles in chaotic flows.

Zahnow JC, Vilela RD, Feudel U, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 2):055301. Epub 2008 May 6.

PMID:
18643122
27.

Poincaré recurrences from the perspective of transient chaos.

Altmann EG, Tél T.

Phys Rev Lett. 2008 May 2;100(17):174101. Epub 2008 Apr 29.

PMID:
18518290
28.

Effective dimensions and chemical reactions in fluid flows.

Károlyi G, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 2):046315. Epub 2007 Oct 25.

PMID:
17995114
29.

Lagrangian avenues of transport in the Earth's mantle.

Schneider J, Schmalzl J, Tél T.

Chaos. 2007 Sep;17(3):033115.

PMID:
17902997
30.

Signatures of fractal clustering of aerosols advected under gravity.

Vilela RD, Tél T, de Moura AP, Grebogi C.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jun;75(6 Pt 2):065203. Epub 2007 Jun 27.

PMID:
17677314
31.

Dynamics of chaotic driving: rotation in the restricted three-body problem.

Vanyó J, Tél T.

Chaos. 2007 Mar;17(1):013113.

PMID:
17411249
32.

Coexistence of inertial competitors in chaotic flows.

Benczik IJ, Károlyi G, Scheuring I, Tél T.

Chaos. 2006 Dec;16(4):043110.

PMID:
17199388
33.

Chemical transients in closed chaotic flows: the role of effective dimensions.

Károlyi G, Tél T.

Phys Rev Lett. 2005 Dec 31;95(26):264501. Epub 2005 Dec 19.

PMID:
16486360
34.

Multifractal spectra of chemical fields in fluid flows.

Benczik IJ, Neufeld Z, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 2):016208. Epub 2005 Jan 12.

PMID:
15697699
35.

Reactive particles in random flows.

Károlyi G, Tél T, de Moura AP, Grebogi C.

Phys Rev Lett. 2004 Apr 30;92(17):174101. Epub 2004 Apr 29.

PMID:
15169152
36.

Universality in active chaos.

Tél T, Nishikawa T, Motter AE, Grebogi C, Toroczkai Z.

Chaos. 2004 Mar;14(1):72-8.

PMID:
15003046
37.

Coarse-grained entropy and information dimension of dynamical systems: The driven Lorentz gas.

Mátyás L, Tél T, Vollmer J.

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jan;69(1 Pt 2):016205. Epub 2004 Jan 26.

PMID:
14995691
38.

Entropy balance, time reversibility, and mass transport in dynamical systems.

Breymann W, Tel T, Vollmer J.

Chaos. 1998 Jun;8(2):396-408.

PMID:
12779744
39.

Chaos and irreversibility: Introductory Comments.

Tel T, Gaspard P, Nicolis G.

Chaos. 1998 Jun;8(2):309-310. No abstract available.

PMID:
12779734
40.

Chaotic mixing induced transitions in reaction-diffusion systems.

Neufeld Z, Haynes PH, Tel T.

Chaos. 2002 Jun;12(2):426-438.

PMID:
12779573
41.

Introduction: Active chaotic flow.

Toroczkai Z, Tel T.

Chaos. 2002 Jun;12(2):372. No abstract available.

PMID:
12779566
42.

Chaotic advection, diffusion, and reactions in open flows.

Tel T, Karolyi G, Pentek A, Scheuring I, Toroczkai Z, Grebogi C, Kadtke J.

Chaos. 2000 Mar;10(1):89-98.

PMID:
12779365
43.

Advection of finite-size particles in open flows.

Benczik IJ, Toroczkai Z, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 2):036303. Epub 2003 Mar 21.

PMID:
12689161
44.

Competing populations in flows with chaotic mixing.

Scheuring I, Károlyi G, Toroczkai Z, Tél T, Péntek A.

Theor Popul Biol. 2003 Mar;63(2):77-90.

PMID:
12615492
45.

Dynamics of "leaking" Hamiltonian systems.

Schneider J, Tél T, Neufeld Z.

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Dec;66(6 Pt 2):066218. Epub 2002 Dec 30.

PMID:
12513395
46.

Selective sensitivity of open chaotic flows on inertial tracer advection: catching particles with a stick.

Benczik IJ, Toroczkai Z, Tél T.

Phys Rev Lett. 2002 Oct 14;89(16):164501. Epub 2002 Sep 25.

PMID:
12398726
47.

Chemical or biological activity in open chaotic flows.

Károlyi G, Péntek A, Toroczkai Z, Tél T, Grebogi C.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt B):5468-81.

PMID:
11969526
48.

Finite-size effects on active chaotic advection.

Nishikawa T, Toroczkai Z, Grebogi C, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 2):026216. Epub 2002 Jan 24.

PMID:
11863641
49.

Multibaker map for shear flow and viscous heating.

Mátyás L, Tél T, Vollmer J.

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):056106. Epub 2001 Oct 18.

PMID:
11736013
50.

Chaotic flow: the physics of species coexistence.

Károlyi G, Péntek A, Scheuring I, Tél T, Toroczkai Z.

Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13661-5.

Supplemental Content

Support Center