Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 36

1.

Evolutionary couplings of amino acid residues reveal structure and function of bacterial signaling proteins.

Szurmant H.

Mol Microbiol. 2019 Aug;112(2):432-437. doi: 10.1111/mmi.14282. Epub 2019 Jul 3.

PMID:
31102561
2.

Inter-residue, inter-protein and inter-family coevolution: bridging the scales.

Szurmant H, Weigt M.

Curr Opin Struct Biol. 2018 Jun;50:26-32. doi: 10.1016/j.sbi.2017.10.014. Epub 2017 Nov 5. Review.

3.

Large-scale identification of coevolution signals across homo-oligomeric protein interfaces by direct coupling analysis.

Uguzzoni G, John Lovis S, Oteri F, Schug A, Szurmant H, Weigt M.

Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2662-E2671. doi: 10.1073/pnas.1615068114. Epub 2017 Mar 13.

4.

The Rational Design, Synthesis, and Antimicrobial Properties of Thiophene Derivatives That Inhibit Bacterial Histidine Kinases.

Boibessot T, Zschiedrich CP, Lebeau A, Bénimèlis D, Dunyach-Rémy C, Lavigne JP, Szurmant H, Benfodda Z, Meffre P.

J Med Chem. 2016 Oct 13;59(19):8830-8847. Epub 2016 Sep 26.

5.

Molecular Mechanisms of Two-Component Signal Transduction.

Zschiedrich CP, Keidel V, Szurmant H.

J Mol Biol. 2016 Sep 25;428(19):3752-75. doi: 10.1016/j.jmb.2016.08.003. Epub 2016 Aug 9. Review.

6.

Inter-Protein Sequence Co-Evolution Predicts Known Physical Interactions in Bacterial Ribosomes and the Trp Operon.

Feinauer C, Szurmant H, Weigt M, Pagnani A.

PLoS One. 2016 Feb 16;11(2):e0149166. doi: 10.1371/journal.pone.0149166. eCollection 2016.

7.

Analysis of periplasmic sensor domains from Anaeromyxobacter dehalogenans 2CP-C: structure of one sensor domain from a histidine kinase and another from a chemotaxis protein.

Pokkuluri PR, Dwulit-Smith J, Duke NE, Wilton R, Mack JC, Bearden J, Rakowski E, Babnigg G, Szurmant H, Joachimiak A, Schiffer M.

Microbiologyopen. 2013 Oct;2(5):766-77. doi: 10.1002/mbo3.112. Epub 2013 Jul 30.

8.

Insight into the sporulation phosphorelay: crystal structure of the sensor domain of Bacillus subtilis histidine kinase, KinD.

Wu R, Gu M, Wilton R, Babnigg G, Kim Y, Pokkuluri PR, Szurmant H, Joachimiak A, Schiffer M.

Protein Sci. 2013 May;22(5):564-76. doi: 10.1002/pro.2237. Epub 2013 Mar 18.

9.

Statistical analyses of protein sequence alignments identify structures and mechanisms in signal activation of sensor histidine kinases.

Szurmant H, Hoch JA.

Mol Microbiol. 2013 Feb;87(4):707-12. doi: 10.1111/mmi.12128. Epub 2012 Dec 28.

10.

Structural basis of histidine kinase autophosphorylation deduced by integrating genomics, molecular dynamics, and mutagenesis.

Dago AE, Schug A, Procaccini A, Hoch JA, Weigt M, Szurmant H.

Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1733-42. doi: 10.1073/pnas.1201301109. Epub 2012 Jun 5.

11.

Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide.

Diaz AR, Core LJ, Jiang M, Morelli M, Chiang CH, Szurmant H, Perego M.

J Bacteriol. 2012 Mar;194(6):1378-88. doi: 10.1128/JB.06747-11. Epub 2012 Jan 20.

12.

Transposon-mediated random mutagenesis of Bacillus subtilis.

Wilson AC, Szurmant H.

Methods Mol Biol. 2011;765:359-71. doi: 10.1007/978-1-61779-197-0_21.

PMID:
21815103
13.

Dissecting the specificity of protein-protein interaction in bacterial two-component signaling: orphans and crosstalks.

Procaccini A, Lunt B, Szurmant H, Hwa T, Weigt M.

PLoS One. 2011 May 9;6(5):e19729. doi: 10.1371/journal.pone.0019729.

14.

A role for the essential YycG sensor histidine kinase in sensing cell division.

Fukushima T, Furihata I, Emmins R, Daniel RA, Hoch JA, Szurmant H.

Mol Microbiol. 2011 Jan;79(2):503-22. doi: 10.1111/j.1365-2958.2010.07464.x. Epub 2010 Nov 29.

15.

Computational modeling of phosphotransfer complexes in two-component signaling.

Schug A, Weigt M, Hoch JA, Onuchic JN, Hwa T, Szurmant H.

Methods Enzymol. 2010;471:43-58. doi: 10.1016/S0076-6879(10)71003-X. Epub 2010 Mar 1.

PMID:
20946841
16.

Inference of direct residue contacts in two-component signaling.

Lunt B, Szurmant H, Procaccini A, Hoch JA, Hwa T, Weigt M.

Methods Enzymol. 2010;471:17-41. doi: 10.1016/S0076-6879(10)71002-8. Epub 2010 Mar 1.

PMID:
20946840
17.

Interaction fidelity in two-component signaling.

Szurmant H, Hoch JA.

Curr Opin Microbiol. 2010 Apr;13(2):190-7. doi: 10.1016/j.mib.2010.01.007. Epub 2010 Feb 3. Review.

18.

High-resolution protein complexes from integrating genomic information with molecular simulation.

Schug A, Weigt M, Onuchic JN, Hwa T, Szurmant H.

Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22124-9. doi: 10.1073/pnas.0912100106. Epub 2009 Dec 17.

19.

Extracytoplasmic PAS-like domains are common in signal transduction proteins.

Chang C, Tesar C, Gu M, Babnigg G, Joachimiak A, Pokkuluri PR, Szurmant H, Schiffer M.

J Bacteriol. 2010 Feb;192(4):1156-9. doi: 10.1128/JB.01508-09. Epub 2009 Dec 11.

20.

Identification of direct residue contacts in protein-protein interaction by message passing.

Weigt M, White RA, Szurmant H, Hoch JA, Hwa T.

Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):67-72. doi: 10.1073/pnas.0805923106. Epub 2008 Dec 30.

21.

Co-evolving motions at protein-protein interfaces of two-component signaling systems identified by covariance analysis.

Szurmant H, Bobay BG, White RA, Sullivan DM, Thompson RJ, Hwa T, Hoch JA, Cavanagh J.

Biochemistry. 2008 Jul 29;47(30):7782-4. doi: 10.1021/bi8009604. Epub 2008 Jun 28.

22.

A sensor histidine kinase co-ordinates cell wall architecture with cell division in Bacillus subtilis.

Fukushima T, Szurmant H, Kim EJ, Perego M, Hoch JA.

Mol Microbiol. 2008 Aug;69(3):621-32. doi: 10.1111/j.1365-2958.2008.06308.x. Epub 2008 Jun 28.

23.

An essential sensor histidine kinase controlled by transmembrane helix interactions with its auxiliary proteins.

Szurmant H, Bu L, Brooks CL 3rd, Hoch JA.

Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5891-6. doi: 10.1073/pnas.0800247105. Epub 2008 Apr 11.

24.

Sensor complexes regulating two-component signal transduction.

Szurmant H, White RA, Hoch JA.

Curr Opin Struct Biol. 2007 Dec;17(6):706-15. Epub 2007 Oct 29. Review.

25.

The essential YycFG two-component system of Bacillus subtilis.

Szurmant H, Fukushima T, Hoch JA.

Methods Enzymol. 2007;422:396-417.

PMID:
17628151
26.

Features of protein-protein interactions in two-component signaling deduced from genomic libraries.

White RA, Szurmant H, Hoch JA, Hwa T.

Methods Enzymol. 2007;422:75-101.

PMID:
17628135
27.

YycH and YycI interact to regulate the essential YycFG two-component system in Bacillus subtilis.

Szurmant H, Mohan MA, Imus PM, Hoch JA.

J Bacteriol. 2007 Apr;189(8):3280-9. Epub 2007 Feb 16.

28.

The crystal structure of Bacillus subtilis YycI reveals a common fold for two members of an unusual class of sensor histidine kinase regulatory proteins.

Santelli E, Liddington RC, Mohan MA, Hoch JA, Szurmant H.

J Bacteriol. 2007 Apr;189(8):3290-5. Epub 2007 Feb 16.

29.
30.

Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from Clostridium botulinum.

Wörner K, Szurmant H, Chiang C, Hoch JA.

Mol Microbiol. 2006 Feb;59(3):1000-12.

31.

YycH regulates the activity of the essential YycFG two-component system in Bacillus subtilis.

Szurmant H, Nelson K, Kim EJ, Perego M, Hoch JA.

J Bacteriol. 2005 Aug;187(15):5419-26.

32.
33.

Diversity in chemotaxis mechanisms among the bacteria and archaea.

Szurmant H, Ordal GW.

Microbiol Mol Biol Rev. 2004 Jun;68(2):301-19. Review.

34.
35.

Bacillus subtilis hydrolyzes CheY-P at the location of its action, the flagellar switch.

Szurmant H, Bunn MW, Cannistraro VJ, Ordal GW.

J Biol Chem. 2003 Dec 5;278(49):48611-6. Epub 2003 Aug 14.

36.

The role of heterologous receptors in McpB-mediated signalling in Bacillus subtilis chemotaxis.

Zimmer MA, Szurmant H, Saulmon MM, Collins MA, Bant JS, Ordal GW.

Mol Microbiol. 2002 Jul;45(2):555-68.

Supplemental Content

Loading ...
Support Center