Format
Sort by
Items per page

Send to

Choose Destination

Best matches for Szöőr Á[au]:

CD28 and 41BB Costimulation Enhances the Effector Function of CD19-Specific Engager T Cells. Velasquez MP et al. Cancer Immunol Res. (2017)

CD123-Engager T Cells as a Novel Immunotherapeutic for Acute Myeloid Leukemia. Bonifant CL et al. Mol Ther. (2016)

T Cell-Activating Mesenchymal Stem Cells as a Biotherapeutic for HCC. Szoor A et al. Mol Ther Oncolytics. (2017)

Search results

Items: 1 to 50 of 52

1.

Enhanced endothelial motility and multicellular sprouting is mediated by the scaffold protein TKS4.

Mehes E, Barath M, Gulyas M, Bugyik E, Geiszt M, Szoor A, Lanyi A, Czirok A.

Sci Rep. 2019 Oct 7;9(1):14363. doi: 10.1038/s41598-019-50915-5.

2.

T Cell-Activating Mesenchymal Stem Cells as a Biotherapeutic for HCC.

Szoor A, Vaidya A, Velasquez MP, Mei Z, Galvan DL, Torres D, Gee A, Heczey A, Gottschalk S.

Mol Ther Oncolytics. 2017 Jul 28;6:69-79. doi: 10.1016/j.omto.2017.07.002. eCollection 2017 Sep 15.

3.

CD28 and 41BB Costimulation Enhances the Effector Function of CD19-Specific Engager T Cells.

Velasquez MP, Szoor A, Vaidya A, Thakkar A, Nguyen P, Wu MF, Liu H, Gottschalk S.

Cancer Immunol Res. 2017 Oct;5(10):860-870. doi: 10.1158/2326-6066.CIR-17-0171. Epub 2017 Aug 18.

4.

CD123-Engager T Cells as a Novel Immunotherapeutic for Acute Myeloid Leukemia.

Bonifant CL, Szoor A, Torres D, Joseph N, Velasquez MP, Iwahori K, Gaikwad A, Nguyen P, Arber C, Song XT, Redell M, Gottschalk S.

Mol Ther. 2016 Sep 29;24(9):1615-26. doi: 10.1038/mt.2016.116. Epub 2016 Jun 6.

6.

T cells expressing CD19-specific Engager Molecules for the Immunotherapy of CD19-positive Malignancies.

Velasquez MP, Torres D, Iwahori K, Kakarla S, Arber C, Rodriguez-Cruz T, Szoor A, Bonifant CL, Gerken C, Cooper LJ, Song XT, Gottschalk S.

Sci Rep. 2016 Jun 3;6:27130. doi: 10.1038/srep27130.

7.

Cell confluence induces switching from proliferation to migratory signaling by site-selective phosphorylation of PDGF receptors on lipid raft platforms.

Szöőr Á, Ujlaky-Nagy L, Tóth G, Szöllősi J, Vereb G.

Cell Signal. 2016 Feb;28(2):81-93. doi: 10.1016/j.cellsig.2015.11.012. Epub 2015 Dec 2.

PMID:
26631574
8.

TCRs genetically linked to CD28 and CD3ε do not mispair with endogenous TCR chains and mediate enhanced T cell persistence and anti-melanoma activity.

Govers C, Sebestyén Z, Roszik J, van Brakel M, Berrevoets C, Szöőr Á, Panoutsopoulou K, Broertjes M, Van T, Vereb G, Szöllősi J, Debets R.

J Immunol. 2014 Nov 15;193(10):5315-26. doi: 10.4049/jimmunol.1302074. Epub 2014 Oct 15.

9.

Silencing the KCNK9 potassium channel (TASK-3) gene disturbs mitochondrial function, causes mitochondrial depolarization, and induces apoptosis of human melanoma cells.

Nagy D, Gönczi M, Dienes B, Szöőr Á, Fodor J, Nagy Z, Tóth A, Fodor T, Bai P, Szücs G, Rusznák Z, Csernoch L.

Arch Dermatol Res. 2014 Dec;306(10):885-902. doi: 10.1007/s00403-014-1511-5. Epub 2014 Oct 16.

PMID:
25318378
10.

Ragweed subpollen particles of respirable size activate human dendritic cells.

Pazmandi K, Kumar BV, Szabo K, Boldogh I, Szoor A, Vereb G, Veres A, Lanyi A, Rajnavolgyi E, Bacsi A.

PLoS One. 2012;7(12):e52085. doi: 10.1371/journal.pone.0052085. Epub 2012 Dec 14.

11.

T-cell synapse formation depends on antigen recognition but not CD3 interaction: studies with TCR:ζ, a candidate transgene for TCR gene therapy.

Roszik J, Sebestyén Z, Govers C, Guri Y, Szöor A, Pályi-Krekk Z, Vereb G, Nagy P, Szöllosi J, Debets R.

Eur J Immunol. 2011 May;41(5):1288-97. doi: 10.1002/eji.200940233. Epub 2011 Apr 13.

12.

Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cells killing is associated with modulation of upstream events in the extrinsic apoptotic pathway.

Vondálová Blanárová O, Jelínková I, Szöor A, Skender B, Soucek K, Horváth V, Vaculová A, Andera L, Sova P, Szöllosi J, Hofmanová J, Vereb G, Kozubík A.

Carcinogenesis. 2011 Jan;32(1):42-51. doi: 10.1093/carcin/bgq220. Epub 2010 Oct 29.

PMID:
21037225
13.

Rafts and the battleships of defense: the multifaceted microdomains for positive and negative signals in immune cells.

Szöor A, Szöllosi J, Vereb G.

Immunol Lett. 2010 May 4;130(1-2):2-12. doi: 10.1016/j.imlet.2009.12.016. Epub 2009 Dec 22. Review.

PMID:
20026358
14.

Effect of short- and long-term spaceflight on the contractile properties of rat skeletal muscles with different functions.

Rapcsák M, Oganov VS, Szilágyi T, Szoor A.

Physiologist. 1993 Feb;36(1 Suppl):S143-6.

PMID:
11538513
15.

Effect of short-term spaceflight on the contractile properties of rat skeletal muscles with different functions.

Rapcsák M, Oganov VS, Murashko LM, Szilágyi T, Szöör A.

Acta Physiol Hung. 1990;76(1):13-20.

PMID:
2088009
16.

Effects of skeletal muscle myosin light chain phosphorylation on synthetic actomyosin ATPase activity and superprecipitation.

Kalapos I, Stepkowski D, Csabina S, Szöór A.

Acta Biochim Biophys Hung. 1989;24(3):231-43.

PMID:
2535028
17.

Quantitative alterations of intramuscular connective tissue in calf muscles of the rat during combined hypoxia and hypokinesia.

Józsa L, Réffy A, Demel S, Thöring J, Rapcsák M, Szöör A, Hideg J.

Acta Physiol Hung. 1989;73(4):393-401.

PMID:
2531533
18.

The effect of ipriflavone treatment on osteoporosis induced by immobilization.

Földes I, Rapcsák M, Szöör A, Gyarmati J, Szilágyi T.

Acta Morphol Hung. 1988;36(1-2):79-93.

PMID:
3149863
19.

Contractile properties of chick embryo muscles in development.

Kalamkarova M, Aleinikova K, Szöör A, Kalapos I, Kofman E.

Acta Biochim Biophys Hung. 1988;23(2):181-6.

PMID:
2976564
20.

[ATPase activity and the contractile capacity of the muscle tissue in chick embryos during development].

Kalamkarova MB, Kofman EB, Aleĭnikova KS, Szoor A, Kalapos I.

Ontogenez. 1988 Jan-Feb;19(1):67-72. Russian.

PMID:
2966919
21.

Radiological investigation of alterations in the rat femur after long-term immobilization.

Gyarmati J Jr, Jenei F, Földes I, Rapcsák M, Szöör A, Szilágyi T.

Acta Physiol Hung. 1987;70(4):357-62.

PMID:
3439469
22.

Effect of plaster-cast immobilization on the bone.

Földes I, Gyarmati J Jr, Rapcsák M, Szöör A, Szilágyi T.

Acta Physiol Hung. 1986;67(4):413-8.

PMID:
3751610
23.
24.

The role of DTNB light chain in the contractile properties of skeletal muscle.

Gróf P, Belágyi J, Szöör A, Csabina S, Kónya L.

Acta Biochim Biophys Hung. 1986;21(3):283-98.

PMID:
3026129
25.

[The paramyosin function in glycerinated muscle fibers during blocking with antibodies of its contacts with structural proteins].

Kalamkarova MB, Kofman EB, Aleĭnikova KS, Rapcsak M, Szoor A.

Biofizika. 1985 Jul-Aug;30(4):675-80. Russian.

PMID:
4052471
26.

[Effect of hypoxia and hypokinesia on skeletal muscle].

Józsa L, Vándor E, Demel Z, Rapcsák M, Réffy A, Hideg J, Szöör A.

Morphol Igazsagugyi Orv Sz. 1985 Apr;25(2):119-26. Hungarian. No abstract available.

PMID:
4010682
27.

Effect of DTNB-treatment on Ca++-sensitivity of superprecipitation and ATPase activity of actomyosin.

Csabina S, Csongor J, Kónya L, Gróf P, Szöör A.

Acta Physiol Hung. 1985;65(4):399-405.

PMID:
3160218
28.

Histochemical and biochemical alterations in skeletal muscles of rats during combined chronic hypoxia and hypokinesia.

Józsa L, Vándor E, Demel S, Rapcsák M, Réffy A, Szöör A, Hideg J.

Gegenbaurs Morphol Jahrb. 1985;131(1):43-54.

PMID:
3158568
29.

The effect of adenosine diphosphate on the interaction of actin-myosin-adenosine triphosphate.

Szöör A, Kónya L, Csabina S.

Acta Biochim Biophys Acad Sci Hung. 1984;19(3-4):311-7.

PMID:
6545638
30.

Effect of immobilization on some glycolytic enzymes of skeletal muscle.

Vereb G, Bot G, Szücs K, Kovács E, Erdödi F, Kalapos I, Szöör A, Rapcsák M, Szilágyi T.

Acta Physiol Hung. 1984;63(1):55-61.

PMID:
6331066
31.

The importance of changes in ATP and ADP concentrations in the development of the phasic superprecipitation of actomyosin.

Csabina S, Csongor J, Kónya L, Szöör A.

Acta Biochim Biophys Acad Sci Hung. 1983;18(3-4):231-6.

PMID:
6678100
32.

Effect of weightlessness on myofibrillar proteins of rat skeletal muscles with different functions in experiment of biosatellite "Cosmos-1129".

Takács O, Rapcsák M, Szöör A, Oganov VS, Szilágyi T, Oganesyan SS, Guba F.

Acta Physiol Hung. 1983;62(3-4):229-33.

PMID:
6666605
33.

Effect of weightlessness on the function of rat skeletal muscles on the biosatellite "Cosmos-1129".

Rapcsák M, Oganov VS, Szöör A, Skuratova SA, Szilágyi T, Takács O.

Acta Physiol Hung. 1983;62(3-4):225-8.

PMID:
6666604
34.

Step-like superprecipitation of actomyosin.

Szöör A, Csabina S, Kónya L, Rapcsák M.

Acta Physiol Hung. 1983;62(2):139-44.

PMID:
6422698
35.

Effect of immobilization on the enzymes of glycogen metabolism.

Kalapos I, Szöör A, Vereb G, Bot G, Rapcsák M, Szilágyi T.

Acta Physiol Hung. 1983;62(1):85-91.

PMID:
6417977
36.

Effect of antibodies to light meromyosin on glycerinated muscle fibres and on actomyosin adenosinetriphosphatases.

Szöör A, Kalamkarova M, Rapcsák M, Kofman E, Aleynikova K, Richter P.

Acta Physiol Hung. 1983;61(1-2):69-75.

PMID:
6227205
37.

Contractile properties of glycerol-treated muscle fibres prepared by Rome's procedure.

Szöör A, Rapcsák M, Boross A.

Acta Biochim Biophys Acad Sci Hung. 1981;16(1-2):101-3. No abstract available.

PMID:
7336880
38.

Experimental investigations on the hypokinesis of skeletal muscles with different functions, V.

Takács O, Szöör A, Sohár I, Kesztyüs L, Guba F.

Acta Biol Acad Sci Hung. 1981;32(1):33-43.

PMID:
7282208
40.

Effect of plaster-cast immobilization on the contractile properties of rabbit skeletal muscles of various functions.

Rapcsák M, Szöör A, Szilágyi T, Takács O.

Acta Physiol Acad Sci Hung. 1981;58(1):47-51.

PMID:
6211032
41.

Study of contractile properties and composition of myofibrillar proteins of skeletal muscles in the Cosmos-1129 experiment.

Szilágyi T, Szöör A, Takács O, Rapcsák M, Oganov VS, Skuratova SA, Oganesyan SS, Murashko LM, Eloyan MA.

Physiologist. 1980 Dec;23(Suppl 6):S67-70. No abstract available.

PMID:
7243941
42.

Distribution of cholinesterases of rabbit skeletal muscle.

Szöör A, Vojcek L, Kalapos I, Kalamkarova M, Kofman E, Nankina V.

Acta Physiol Acad Sci Hung. 1980;56(2):179-86.

PMID:
7257837
43.

ATPase activity of sulfhydryl-modified cardiac myosin from normal and isoproterenol-treated rats.

Szabó J, Nosztray K, Szöör A.

Acta Biol Acad Sci Hung. 1979;30(4):347-53.

PMID:
162330
44.

Experimental investigations on hypokinesis of skeletal muscles with different functions, II. Quantitative changes in the nucleic acids.

Hollósi G, Takács O, Guba F, Szöör A, Szilágyi T.

Acta Biol Acad Sci Hung. 1977;28(2):205-12.

PMID:
605713
45.

Experimental investigations on hypokinesis of skeletal muscles with different functions. I. Changes in muscle weight, protein and contractile properties.

Szöör A, Boross A, Hollósi G, Szilágyi T, Kesztyüs L.

Acta Biol Acad Sci Hung. 1977;28(2):195-204.

PMID:
605712
46.

Studies on adenosine triphosphatase activity of rat cardiac myosin in isoproterenol-induced cardiac hypertrophy.

Szabó J, Nosztray K, Szöör A.

Acta Biol Acad Sci Hung. 1977;28(4):389-96.

PMID:
211764
47.

Causal investigations on cartilage and bone formation. I. The problem; examination of some components of Levander's bone extract.

Hadházy C, Réthy A, Mándi B, Szöör A.

Acta Biol Acad Sci Hung. 1968;19(3):289-304. No abstract available.

PMID:
4886543
48.

[Ethionamide chloral hydrate in the treatment of pulmonary tuberculosis].

Schrádi A, Bene J, Szabó A, Szöör A.

Orv Hetil. 1965 Sep 12;106(37):1753-7. Hungarian. No abstract available.

PMID:
5825107
49.

The effect of heat treatment on the cholinesterase activity of actomyosin.

Szöör A, Szabolcs M, Kövér A.

Acta Physiol Acad Sci Hung. 1965;28(3):217-25. No abstract available.

PMID:
5861801
50.

[Experimental bases of histamine-azoprotein therapy. Further studies on the preparation and properties of a histamine antigen].

Szöör A, Richter P, Csernyánszky H, Kesztyüs L, Went I.

Allerg Asthma (Leipz). 1965;11(1):50-7. German. No abstract available.

PMID:
4378579

Supplemental Content

Support Center