Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 123

1.

Substituted anthraquinones represent a potential scaffold for DNA methyltransferase 1-specific inhibitors.

Switzer RL, Medrano J, Reedel DA, Weiss J.

PLoS One. 2019 Jul 15;14(7):e0219830. doi: 10.1371/journal.pone.0219830. eCollection 2019.

2.

Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance.

Hove-Jensen B, Andersen KR, Kilstrup M, Martinussen J, Switzer RL, Willemoës M.

Microbiol Mol Biol Rev. 2016 Dec 28;81(1). pii: e00040-16. doi: 10.1128/MMBR.00040-16. Print 2017 Mar. Review.

3.

Discoveries in bacterial nucleotide metabolism.

Switzer RL.

J Biol Chem. 2009 Mar 13;284(11):6585-94. doi: 10.1074/jbc.X800012200. Epub 2008 Oct 23. Review. No abstract available.

4.

Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors.

Turnbough CL Jr, Switzer RL.

Microbiol Mol Biol Rev. 2008 Jun;72(2):266-300, table of contents. doi: 10.1128/MMBR.00001-08. Review.

5.

pyr RNA binding to the Bacillus caldolyticus PyrR attenuation protein - characterization and regulation by uridine and guanosine nucleotides.

Jørgensen CM, Fields CJ, Chander P, Watt D, Burgner JW 2nd, Smith JL, Switzer RL.

FEBS J. 2008 Feb;275(4):655-70. doi: 10.1111/j.1742-4658.2007.06227.x. Epub 2008 Jan 8.

6.

Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis.

Gerth U, Kock H, Kusters I, Michalik S, Switzer RL, Hecker M.

J Bacteriol. 2008 Jan;190(1):321-31. Epub 2007 Nov 2.

7.

Regulation of pyr gene expression in Mycobacterium smegmatis by PyrR-dependent translational repression.

Fields CJ, Switzer RL.

J Bacteriol. 2007 Sep;189(17):6236-45. Epub 2007 Jun 29.

8.
9.
10.

Mutations affecting transcription pausing in the Bacillus subtilis pyr operon.

Zhang H, Jørgensen CM, Switzer RL.

Arch Microbiol. 2005 Nov;184(2):101-7. Epub 2005 Oct 21.

11.

Structure of the nucleotide complex of PyrR, the pyr attenuation protein from Bacillus caldolyticus, suggests dual regulation by pyrimidine and purine nucleotides.

Chander P, Halbig KM, Miller JK, Fields CJ, Bonner HK, Grabner GK, Switzer RL, Smith JL.

J Bacteriol. 2005 Mar;187(5):1773-82.

12.

H.A. Barker.

Switzer RL, Stadtman ER, Stadtman TC.

Biogr Mem Natl Acad Sci. 2004;84:2-20. No abstract available.

PMID:
15484416
13.

Attenuation control of pyrG expression in Bacillus subtilis is mediated by CTP-sensitive reiterative transcription.

Meng Q, Turnbough CL Jr, Switzer RL.

Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):10943-8. Epub 2004 Jul 13.

14.
15.
16.
18.

Molecular recognition of pyr mRNA by the Bacillus subtilis attenuation regulatory protein PyrR.

Bonner ER, D'Elia JN, Billips BK, Switzer RL.

Nucleic Acids Res. 2001 Dec 1;29(23):4851-65.

19.
20.

Purification and characterization of the DeoR repressor of Bacillus subtilis.

Zeng X, Saxild HH, Switzer RL.

J Bacteriol. 2000 Apr;182(7):1916-22.

21.

Biochemical characterization of the heteromeric Bacillus subtilis dihydroorotate dehydrogenase and its isolated subunits.

Kahler AE, Nielsen FS, Switzer RL.

Arch Biochem Biophys. 1999 Nov 15;371(2):191-201.

PMID:
10545205
22.

ISP-4 and CWBP52 are proteins encoded by the same gene in Bacillus subtilis.

Hageman JH, Switzer RL.

Microbiology. 1999 Feb;145 ( Pt 2):281. No abstract available.

PMID:
10075409
23.

The Enterococcus faecalis pyr operon is regulated by autogenous transcriptional attenuation at a single site in the 5' leader.

Ghim SY, Kim CC, Bonner ER, D'Elia JN, Grabner GK, Switzer RL.

J Bacteriol. 1999 Feb;181(4):1324-9.

24.
26.
27.

Mechanism of the synergistic end-product regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase by nucleotides.

Chen S, Tomchick DR, Wolle D, Hu P, Smith JL, Switzer RL, Zalkin H.

Biochemistry. 1997 Sep 2;36(35):10718-26.

PMID:
9271502
28.

Function of RNA secondary structures in transcriptional attenuation of the Bacillus subtilis pyr operon.

Lu Y, Turner RJ, Switzer RL.

Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14462-7.

33.
34.
35.

The genetic and functional basis of purine nucleotide feedback-resistant phosphoribosylpyrophosphate synthetase superactivity.

Becker MA, Smith PR, Taylor W, Mustafi R, Switzer RL.

J Clin Invest. 1995 Nov;96(5):2133-41.

39.
40.

Structure of the allosteric regulatory enzyme of purine biosynthesis.

Smith JL, Zaluzec EJ, Wery JP, Niu L, Switzer RL, Zalkin H, Satow Y.

Science. 1994 Jun 3;264(5164):1427-33.

PMID:
8197456
42.

Point mutations in PRPS1, the gene encoding the PRPP synthetase (PRS) 1 isoform, underlie X-linked PRS superactivity associated with purine nucleotide inhibitor-resistance.

Becker MA, Nosal JM, Switzer RL, Smith PR, Palella TD, Roessler BJ.

Adv Exp Med Biol. 1994;370:707-10. Review. No abstract available.

PMID:
7661003
43.

Human X-linked phosphoribosylpyrophosphate synthetase superactivity is associated with distinct point mutations in the PRPS1 gene.

Roessler BJ, Nosal JM, Smith PR, Heidler SA, Palella TD, Switzer RL, Becker MA.

J Biol Chem. 1993 Dec 15;268(35):26476-81.

45.
47.

Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon.

Quinn CL, Stephenson BT, Switzer RL.

J Biol Chem. 1991 May 15;266(14):9113-27.

49.
50.

Human phosphoribosylpyrophosphate synthetase (PRS) 2: an independent active, X chromosome-linked PRS isoform.

Becker MA, Heidler SA, Nosal JM, Switzer RL, LeBeau MM, Shapiro LJ, Palella TD, Roessler BJ.

Adv Exp Med Biol. 1991;309B:129-32. No abstract available.

PMID:
1723569

Supplemental Content

Loading ...
Support Center