Format
Sort by

Send to

Choose Destination

Search results

Items: 5

1.

Structural basis of Rad53 kinase activation by dimerization and activation segment exchange.

Wybenga-Groot LE, Ho CS, Sweeney FD, Ceccarelli DF, McGlade CJ, Durocher D, Sicheri F.

Cell Signal. 2014 Sep;26(9):1825-36. doi: 10.1016/j.cellsig.2014.05.004. Epub 2014 May 9.

PMID:
24815189
2.

CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation.

Vidanes GM, Sweeney FD, Galicia S, Cheung S, Doyle JP, Durocher D, Toczyski DP.

PLoS Biol. 2010 Jan 26;8(1):e1000286. doi: 10.1371/journal.pbio.1000286.

3.

Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase.

Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, Pelletier L, Jackson SP, Durocher D.

Science. 2007 Dec 7;318(5856):1637-40. Epub 2007 Nov 15.

4.

A screen for suppressors of gross chromosomal rearrangements identifies a conserved role for PLP in preventing DNA lesions.

Kanellis P, Gagliardi M, Banath JP, Szilard RK, Nakada S, Galicia S, Sweeney FD, Cabelof DC, Olive PL, Durocher D.

PLoS Genet. 2007 Aug;3(8):e134.

5.

Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation.

Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D.

Curr Biol. 2005 Aug 9;15(15):1364-75.

Supplemental Content

Loading ...
Support Center