Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 44

1.

DCAF1 (VprBP): emerging physiological roles for a unique dual-service E3 ubiquitin ligase substrate receptor.

Schabla NM, Mondal K, Swanson PC.

J Mol Cell Biol. 2018 Dec 24. doi: 10.1093/jmcb/mjy085. [Epub ahead of print]

PMID:
30590706
2.

IL10 restrains autoreactive B cells in transgenic mice expressing inactive RAG1.

Palmer VL, Worth AN, Scott RL, Perry GA, Yan M, Li QZ, Swanson PC.

Cell Immunol. 2018 Sep;331:110-120. doi: 10.1016/j.cellimm.2018.06.004. Epub 2018 Jun 13.

PMID:
30017086
3.

VprBP (DCAF1) Regulates RAG1 Expression Independently of Dicer by Mediating RAG1 Degradation.

Schabla NM, Perry GA, Palmer VL, Swanson PC.

J Immunol. 2018 Aug 1;201(3):930-939. doi: 10.4049/jimmunol.1800054. Epub 2018 Jun 20.

4.

A long noncoding RNA, lincRNA-Tnfaip3, acts as a coregulator of NF-κB to modulate inflammatory gene transcription in mouse macrophages.

Ma S, Ming Z, Gong AY, Wang Y, Chen X, Hu G, Zhou R, Shibata A, Swanson PC, Chen XM.

FASEB J. 2017 Mar;31(3):1215-1225. doi: 10.1096/fj.201601056R. Epub 2016 Dec 15.

5.

Cd1d regulates B cell development but not B cell accumulation and IL10 production in mice with pathologic CD5(+) B cell expansion.

Palmer VL, Nganga VK, Rothermund ME, Perry GA, Swanson PC.

BMC Immunol. 2015 Nov 4;16:66. doi: 10.1186/s12865-015-0130-z.

6.

Absence of caveolin-1 leads to delayed development of chronic lymphocytic leukemia in Eμ-TCL1 mouse model.

Shukla A, Cutucache CE, Sutton GL, Pitner MA, Rai K, Rai S, Opavsky R, Swanson PC, Joshi SS.

Exp Hematol. 2016 Jan;44(1):30-7.e1. doi: 10.1016/j.exphem.2015.09.005. Epub 2015 Oct 3.

PMID:
26435347
7.

VprBP Is Required for Efficient Editing and Selection of Igκ+ B Cells, but Is Dispensable for Igλ+ and Marginal Zone B Cell Maturation and Selection.

Palmer VL, Aziz-Seible R, Kassmeier MD, Rothermund M, Perry GA, Swanson PC.

J Immunol. 2015 Aug 15;195(4):1524-37. doi: 10.4049/jimmunol.1500952. Epub 2015 Jul 6.

8.
9.

Accelerated progression of chronic lymphocytic leukemia in Eμ-TCL1 mice expressing catalytically inactive RAG1.

Nganga VK, Palmer VL, Naushad H, Kassmeier MD, Anderson DK, Perry GA, Schabla NM, Swanson PC.

Blood. 2013 May 9;121(19):3855-66, S1-16. doi: 10.1182/blood-2012-08-446732. Epub 2013 Mar 15.

10.

Vitamin C promotes maturation of T-cells.

Manning J, Mitchell B, Appadurai DA, Shakya A, Pierce LJ, Wang H, Nganga V, Swanson PC, May JM, Tantin D, Spangrude GJ.

Antioxid Redox Signal. 2013 Dec 10;19(17):2054-67. doi: 10.1089/ars.2012.4988. Epub 2013 Feb 5.

11.

Smoke-induced signal molecules in bone marrow cells from altered low-density lipoprotein receptor-related protein 5 mice.

Ma D, Li Y, Hackfort B, Zhao Y, Xiao J, Swanson PC, Lappe J, Xiao P, Cullen D, Akhter M, Recker R, Xiao GG.

J Proteome Res. 2012 Jul 6;11(7):3548-60. doi: 10.1021/pr2012158. Epub 2012 Jun 4.

PMID:
22616666
12.

Real-time monitoring of RAG-catalyzed DNA cleavage unveils dynamic changes in coding end association with the coding end complex.

Wang G, Dhar K, Swanson PC, Levitus M, Chang Y.

Nucleic Acids Res. 2012 Jul;40(13):6082-96. doi: 10.1093/nar/gks255. Epub 2012 Mar 20.

13.

VprBP binds full-length RAG1 and is required for B-cell development and V(D)J recombination fidelity.

Kassmeier MD, Mondal K, Palmer VL, Raval P, Kumar S, Perry GA, Anderson DK, Ciborowski P, Jackson S, Xiong Y, Swanson PC.

EMBO J. 2012 Feb 15;31(4):945-58. doi: 10.1038/emboj.2011.455. Epub 2011 Dec 13.

14.

Mechanistic basis for RAG discrimination between recombination sites and the off-target sites of human lymphomas.

Shimazaki N, Askary A, Swanson PC, Lieber MR.

Mol Cell Biol. 2012 Jan;32(2):365-75. doi: 10.1128/MCB.06187-11. Epub 2011 Nov 7.

15.

Accumulation of B1-like B cells in transgenic mice over-expressing catalytically inactive RAG1 in the periphery.

Hassaballa AE, Palmer VL, Anderson DK, Kassmeier MD, Nganga VK, Parks KW, Volkmer DL, Perry GA, Swanson PC.

Immunology. 2011 Dec;134(4):469-86. doi: 10.1111/j.1365-2567.2011.03509.x.

16.

N-acetylcysteine increases the frequency of bone marrow pro-B/pre-B cells, but does not reverse cigarette smoking-induced loss of this subset.

Palmer VL, Kassmeier MD, Willcockson J, Akhter MP, Cullen DM, Swanson PC.

PLoS One. 2011;6(9):e24804. doi: 10.1371/journal.pone.0024804. Epub 2011 Sep 16.

17.

V(D)J recombination: mechanisms of initiation.

Schatz DG, Swanson PC.

Annu Rev Genet. 2011;45:167-202. doi: 10.1146/annurev-genet-110410-132552. Epub 2011 Aug 19. Review.

PMID:
21854230
18.

Cigarette smoke-induced effects on bone marrow B-cell subsets and CD4+:CD8+ T-cell ratios are reversed by smoking cessation: influence of bone mass on immune cell response to and recovery from smoke exposure.

Fusby JS, Kassmeier MD, Palmer VL, Perry GA, Anderson DK, Hackfort BT, Alvarez GK, Cullen DM, Akhter MP, Swanson PC.

Inhal Toxicol. 2010 Aug;22(9):785-96. doi: 10.3109/08958378.2010.483258.

PMID:
20482464
19.

Early steps of V(D)J rearrangement: insights from biochemical studies of RAG-RSS complexes.

Swanson PC, Kumar S, Raval P.

Adv Exp Med Biol. 2009;650:1-15. Review.

PMID:
19731797
20.

Molecular mechanism underlying RAG1/RAG2 synaptic complex formation.

Shlyakhtenko LS, Gilmore J, Kriatchko AN, Kumar S, Swanson PC, Lyubchenko YL.

J Biol Chem. 2009 Jul 31;284(31):20956-65. doi: 10.1074/jbc.M109.028977. Epub 2009 Jun 5.

21.

HMGB1/2 can target DNA for illegitimate cleavage by the RAG1/2 complex.

Zhang M, Swanson PC.

BMC Mol Biol. 2009 Mar 24;10:24. doi: 10.1186/1471-2199-10-24.

22.

Full-length RAG1 promotes contact with coding and intersignal sequences in RAG protein complexes bound to recombination signals paired in cis.

Kumar S, Swanson PC.

Nucleic Acids Res. 2009 Apr;37(7):2211-26. doi: 10.1093/nar/gkp047. Epub 2009 Feb 20.

23.

A biochemically defined system for coding joint formation in V(D)J recombination.

Lu H, Shimazaki N, Raval P, Gu J, Watanabe G, Schwarz K, Swanson PC, Lieber MR.

Mol Cell. 2008 Aug 22;31(4):485-97. doi: 10.1016/j.molcel.2008.05.029.

24.

HMG-box domain stimulation of RAG1/2 cleavage activity is metal ion dependent.

Kriatchko AN, Bergeron S, Swanson PC.

BMC Mol Biol. 2008 Apr 1;9:32. doi: 10.1186/1471-2199-9-32.

25.

Evidence for Ku70/Ku80 association with full-length RAG1.

Raval P, Kriatchko AN, Kumar S, Swanson PC.

Nucleic Acids Res. 2008 Apr;36(6):2060-72. doi: 10.1093/nar/gkn049. Epub 2008 Feb 14.

26.

V(D)J recombinase binding and cleavage of cryptic recombination signal sequences identified from lymphoid malignancies.

Zhang M, Swanson PC.

J Biol Chem. 2008 Mar 14;283(11):6717-27. doi: 10.1074/jbc.M710301200. Epub 2008 Jan 9.

27.

Fluorescence resonance energy transfer analysis of recombination signal sequence configuration in the RAG1/2 synaptic complex.

Ciubotaru M, Kriatchko AN, Swanson PC, Bright FV, Schatz DG.

Mol Cell Biol. 2007 Jul;27(13):4745-58. Epub 2007 Apr 30.

28.

The structure-specific nicking of small heteroduplexes by the RAG complex: implications for lymphoid chromosomal translocations.

Raghavan SC, Gu J, Swanson PC, Lieber MR.

DNA Repair (Amst). 2007 Jun 1;6(6):751-9. Epub 2007 Feb 20.

29.

RAG and HMGB1 proteins: purification and biochemical analysis of recombination signal complexes.

Bergeron S, Anderson DK, Swanson PC.

Methods Enzymol. 2006;408:511-28.

PMID:
16793390
30.

Identification and characterization of a gain-of-function RAG-1 mutant.

Kriatchko AN, Anderson DK, Swanson PC.

Mol Cell Biol. 2006 Jun;26(12):4712-28.

31.
32.
33.

The bounty of RAGs: recombination signal complexes and reaction outcomes.

Swanson PC.

Immunol Rev. 2004 Aug;200:90-114. Review.

PMID:
15242399
34.

A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex.

Raghavan SC, Swanson PC, Wu X, Hsieh CL, Lieber MR.

Nature. 2004 Mar 4;428(6978):88-93.

PMID:
14999286
35.
36.

A RAG-1/RAG-2 tetramer supports 12/23-regulated synapsis, cleavage, and transposition of V(D)J recombination signals.

Swanson PC.

Mol Cell Biol. 2002 Nov;22(22):7790-801. Erratum in: Mol Cell Biol. 2003 Apr;23(8):3029.

37.
39.
41.

Ligand recognition by murine anti-DNA autoantibodies. II. Genetic analysis and pathogenicity.

Swanson PC, Yung RL, Blatt NB, Eagan MA, Norris JM, Richardson BC, Johnson KJ, Glick GD.

J Clin Invest. 1996 Apr 1;97(7):1748-60.

42.

Ligand recognition by anti-DNA autoantibodies. Affinity, specificity, and mode of binding.

Swanson PC, Ackroyd C, Glick GD.

Biochemistry. 1996 Feb 6;35(5):1624-33.

PMID:
8634294
43.

Application of the gel shift assay to study the affinity and specificity of anti-DNA autoantibodies.

Stevens SY, Swanson PC, Glick GD.

J Immunol Methods. 1994 Dec 28;177(1-2):185-90.

44.

High resolution epitope mapping of an anti-DNA autoantibody using model DNA ligands.

Swanson PC, Cooper BC, Glick GD.

J Immunol. 1994 Mar 1;152(5):2601-12.

PMID:
7510750

Supplemental Content

Loading ...
Support Center