Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 48

1.

A yeast two-hybrid knockout strain to explore thioredoxin-interacting proteins in vivo.

Vignols F, Bréhélin C, Surdin-Kerjan Y, Thomas D, Meyer Y.

Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16729-34. Epub 2005 Nov 4.

2.

Tetrahydrofolate biosynthesis in plants: molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana.

Ravanel S, Cherest H, Jabrin S, Grunwald D, Surdin-Kerjan Y, Douce R, Rébeillé F.

Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15360-5.

3.

Molecular evolution of protein atomic composition.

Baudouin-Cornu P, Surdin-Kerjan Y, Marlière P, Thomas D.

Science. 2001 Jul 13;293(5528):297-300.

4.

Reverse methionine biosynthesis from S-adenosylmethionine in eukaryotic cells.

Thomas D, Becker A, Surdin-Kerjan Y.

J Biol Chem. 2000 Dec 29;275(52):40718-24.

6.

SCF(Met30)-mediated control of the transcriptional activator Met4 is required for the G(1)-S transition.

Patton EE, Peyraud C, Rouillon A, Surdin-Kerjan Y, Tyers M, Thomas D.

EMBO J. 2000 Apr 3;19(7):1613-24.

7.

Transport of sulfonium compounds. Characterization of the s-adenosylmethionine and s-methylmethionine permeases from the yeast Saccharomyces cerevisiae.

Rouillon A, Surdin-Kerjan Y, Thomas D.

J Biol Chem. 1999 Oct 1;274(40):28096-105. Erratum in: J Biol Chem 1999 Nov 19;274(47):33825.

8.

Metabolism of sulfur amino acids in Saccharomyces cerevisiae.

Thomas D, Surdin-Kerjan Y.

Microbiol Mol Biol Rev. 1997 Dec;61(4):503-32. Review.

9.
10.

Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae.

Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y.

Genetics. 1997 Mar;145(3):627-35.

11.

Siroheme biosynthesis in Saccharomyces cerevisiae requires the products of both the MET1 and MET8 genes.

Hansen J, Muldbjerg M, Chérest H, Surdin-Kerjan Y.

FEBS Lett. 1997 Jan 13;401(1):20-4.

12.

The study of methionine uptake in Saccharomyces cerevisiae reveals a new family of amino acid permeases.

Isnard AD, Thomas D, Surdin-Kerjan Y.

J Mol Biol. 1996 Oct 4;262(4):473-84.

PMID:
8893857
14.

Met30p, a yeast transcriptional inhibitor that responds to S-adenosylmethionine, is an essential protein with WD40 repeats.

Thomas D, Kuras L, Barbey R, Cherest H, Blaiseau PL, Surdin-Kerjan Y.

Mol Cell Biol. 1995 Dec;15(12):6526-34.

15.
16.

The vacuolar compartment is required for sulfur amino acid homeostasis in Saccharomyces cerevisiae.

Jacquemin-Faure I, Thomas D, Laporte J, Cibert C, Surdin-Kerjan Y.

Mol Gen Genet. 1994 Sep 1;244(5):519-29.

PMID:
8078479
18.

Salt tolerance and methionine biosynthesis in Saccharomyces cerevisiae involve a putative phosphatase gene.

Gläser HU, Thomas D, Gaxiola R, Montrichard F, Surdin-Kerjan Y, Serrano R.

EMBO J. 1993 Aug;12(8):3105-10.

19.

Evolutionary relationships between yeast and bacterial homoserine dehydrogenases.

Thomas D, Barbey R, Surdin-Kerjan Y.

FEBS Lett. 1993 Jun 1;323(3):289-93.

20.

Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation.

Thomas D, Barbey R, Henry D, Surdin-Kerjan Y.

J Gen Microbiol. 1992 Oct;138(10):2021-8.

PMID:
1479340
23.
26.

An improved strategy for generating a family of unidirectional deletions on large DNA fragments.

Thomas D, Surdin-Kerjan Y.

Genet Anal Tech Appl. 1990 Jun;7(4):87-90.

PMID:
2206602
27.

Nucleotide sequence of the MET8 gene of Saccharomyces cerevisiae.

Cherest H, Thomas D, Surdin-Kerjan Y.

Nucleic Acids Res. 1990 Feb 11;18(3):659. No abstract available.

28.
29.

Structure of the HOM2 gene of Saccharomyces cerevisiae and regulation of its expression.

Thomas D, Surdin-Kerjan Y.

Mol Gen Genet. 1989 May;217(1):149-54.

PMID:
2570346
30.
32.
33.
34.

Nucleotide sequence of the Saccharomyces cerevisiae MET25 gene.

Kerjan P, Cherest H, Surdin-Kerjan Y.

Nucleic Acids Res. 1986 Oct 24;14(20):7861-71.

35.

The expression of the MET25 gene of Saccharomyces cerevisiae is regulated transcriptionally.

Sangsoda S, Cherest H, Surdin-Kerjan Y.

Mol Gen Genet. 1985;200(3):407-14.

PMID:
2995764
36.

Transcriptional regulation of the MET3 gene of Saccharomyces cerevisiae.

Cherest H, Nguyen NT, Surdin-Kerjan Y.

Gene. 1985;34(2-3):269-81.

PMID:
2989110
37.
38.

Construction of hybrid plasmids containing the lysA gene of Escherichia coli: studies of expression in Escherichia coli and Saccharomyces cerevisiae.

Chenais J, Richaud C, Ronceray J, Cherest H, Surdin-Kerjan Y, Patte JC.

Mol Gen Genet. 1981;182(3):456-61.

PMID:
6272062
39.
40.

Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study.

Breton A, Surdin-Kerjan Y.

J Bacteriol. 1977 Oct;132(1):224-32.

41.
42.

Regulation of methionine synthesis in Saccharomyces cerevisiae operates through independent signals: methionyl-tRNAmet and S-adenosylmethionine.

Surdin-Kerjan Y, Cherest H, De Robichon-Szulmajster H.

Acta Microbiol Acad Sci Hung. 1976;23(2):109-20.

PMID:
788467
43.
44.
45.

Effects of regulatory mutations upon methionine biosynthesis in Saccharomyces cerevisiae: loci eth2-eth3-eth10.

Cherest H, Surdin-Kerjan Y, Antoniewski J, de Robichon-Szulmajster H.

J Bacteriol. 1973 Sep;115(3):1084-93.

46.

S-adenosyl methionine-mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae.

Cherest H, Surdin-Kerjan Y, Antoniewski J, Robichon-Szulmajster H.

J Bacteriol. 1973 Jun;114(3):928-33.

47.

Supplemental Content

Loading ...
Support Center