Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice.

Maity S, Muhamed J, Sarikhani M, Kumar S, Ahamed F, Spurthi KM, Ravi V, Jain A, Khan D, Arathi BP, Desingu PA, Sundaresan NR.

J Biol Chem. 2019 Nov 19. pii: jbc.RA118.007212. doi: 10.1074/jbc.RA118.007212. [Epub ahead of print]

2.

A nanopillar array on black titanium prepared by reactive ion etching augments cardiomyogenic commitment of stem cells.

Das Ghosh L, Hasan J, Jain A, Sundaresan NR, Chatterjee K.

Nanoscale. 2019 Nov 21;11(43):20766-20776. doi: 10.1039/c9nr03424b. Epub 2019 Oct 25.

PMID:
31651003
3.

SIRT6 transcriptionally regulates global protein synthesis through transcription factor Sp1 independent of its deacetylase activity.

Ravi V, Jain A, Khan D, Ahamed F, Mishra S, Giri M, Inbaraj M, Krishna S, Sarikhani M, Maity S, Kumar S, Shah RA, Dave P, Pandit AS, Rajendran R, Desingu PA, Varshney U, Das S, Kolthur-Seetharam U, Rajakumari S, Singh M, Sundaresan NR.

Nucleic Acids Res. 2019 Sep 26;47(17):9115-9131. doi: 10.1093/nar/gkz648.

4.

Sirtuin 6 mediated stem cell cardiomyogenesis on protein coated nanofibrous scaffolds.

Ghosh LD, Ravi V, Jain A, Panicker AG, Sundaresan NR, Chatterjee K.

Nanomedicine. 2019 Jul;19:145-155. doi: 10.1016/j.nano.2019.03.005. Epub 2019 Mar 26.

PMID:
30926577
5.

Salmonella escapes adaptive immune response via SIRT2 mediated modulation of innate immune response in dendritic cells.

Gogoi M, Chandra K, Sarikhani M, Ramani R, Sundaresan NR, Chakravortty D.

PLoS Pathog. 2018 Nov 19;14(11):e1007437. doi: 10.1371/journal.ppat.1007437. eCollection 2018 Nov.

6.

Toll-like receptor 2 deficiency hyperactivates the FoxO1 transcription factor and induces aging-associated cardiac dysfunction in mice.

Spurthi KM, Sarikhani M, Mishra S, Desingu PA, Yadav S, Rao S, Maity S, Tamta AK, Kumar S, Majumdar S, Jain A, Raghuraman A, Khan D, Singh I, Samuel RJ, Ramachandra SG, Nandi D, Sundaresan NR.

J Biol Chem. 2018 Aug 24;293(34):13073-13089. doi: 10.1074/jbc.RA118.001880. Epub 2018 Jun 21.

7.

Elucidating molecular events underlying topography mediated cardiomyogenesis of stem cells on 3D nanofibrous scaffolds.

Ghosh LD, Jain A, Sundaresan NR, Chatterjee K.

Mater Sci Eng C Mater Biol Appl. 2018 Jul 1;88:104-114. doi: 10.1016/j.msec.2018.03.012. Epub 2018 Mar 15.

PMID:
29636125
8.

Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy.

Mishra S, Tamta AK, Sarikhani M, Desingu PA, Kizkekra SM, Pandit AS, Kumar S, Khan D, Raghavan SC, Sundaresan NR.

Sci Rep. 2018 Apr 4;8(1):5599. doi: 10.1038/s41598-018-23669-9.

9.

Systematic evaluation of the adaptability of the non-radioactive SUnSET assay to measure cardiac protein synthesis.

Ravi V, Jain A, Ahamed F, Fathma N, Desingu PA, Sundaresan NR.

Sci Rep. 2018 Mar 15;8(1):4587. doi: 10.1038/s41598-018-22903-8.

10.

Engineering an in vitro organotypic model for studying cardiac hypertrophy.

Jain A, Hasan J, Desingu PA, Sundaresan NR, Chatterjee K.

Colloids Surf B Biointerfaces. 2018 May 1;165:355-362. doi: 10.1016/j.colsurfb.2018.02.036. Epub 2018 Feb 27.

PMID:
29518684
11.

SIRT2 deacetylase regulates the activity of GSK3 isoforms independent of inhibitory phosphorylation.

Sarikhani M, Mishra S, Maity S, Kotyada C, Wolfgeher D, Gupta MP, Singh M, Sundaresan NR.

Elife. 2018 Mar 5;7. pii: e32952. doi: 10.7554/eLife.32952.

12.

SIRT2 regulates oxidative stress-induced cell death through deacetylation of c-Jun NH2-terminal kinase.

Sarikhani M, Mishra S, Desingu PA, Kotyada C, Wolfgeher D, Gupta MP, Singh M, Sundaresan NR.

Cell Death Differ. 2018 Sep;25(9):1638-1656. doi: 10.1038/s41418-018-0069-8. Epub 2018 Feb 15.

13.

SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis.

Sarikhani M, Maity S, Mishra S, Jain A, Tamta AK, Ravi V, Kondapalli MS, Desingu PA, Khan D, Kumar S, Rao S, Inbaraj M, Pandit AS, Sundaresan NR.

J Biol Chem. 2018 Apr 6;293(14):5281-5294. doi: 10.1074/jbc.RA117.000915. Epub 2018 Feb 13.

14.

SIRT6 deacetylase transcriptionally regulates glucose metabolism in heart.

Khan D, Sarikhani M, Dasgupta S, Maniyadath B, Pandit AS, Mishra S, Ahamed F, Dubey A, Fathma N, Atreya HS, Kolthur-Seetharam U, Sundaresan NR.

J Cell Physiol. 2018 Jul;233(7):5478-5489. doi: 10.1002/jcp.26434. Epub 2018 Feb 22.

PMID:
29319170
15.

Nitric oxide synthase 2 enhances the survival of mice during Salmonella Typhimurium infection-induced sepsis by increasing reactive oxygen species, inflammatory cytokines and recruitment of neutrophils to the peritoneal cavity.

Yadav S, Pathak S, Sarikhani M, Majumdar S, Ray S, Chandrasekar BS, Adiga V, Sundaresan NR, Nandi D.

Free Radic Biol Med. 2018 Feb 20;116:73-87. doi: 10.1016/j.freeradbiomed.2017.12.032. Epub 2018 Jan 5.

PMID:
29309892
16.

Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor β (TGFβ1)-dependent paracrine mechanism.

Nagalingam RS, Sundaresan NR, Noor M, Gupta MP, Solaro RJ, Gupta M.

J Biol Chem. 2017 Mar 24;292(12):5124. doi: 10.1074/jbc.A114.580977. No abstract available.

17.

A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling.

Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ, Gupta M.

J Biol Chem. 2017 Mar 24;292(12):5123. doi: 10.1074/jbc.A112.442384. No abstract available.

18.

A simplified protocol for culture of murine neonatal cardiomyocytes on nanoscale keratin coated surfaces.

Jain A, Ravi V, Muhamed J, Chatterjee K, Sundaresan NR.

Int J Cardiol. 2017 Apr 1;232:160-170. doi: 10.1016/j.ijcard.2017.01.036. Epub 2017 Jan 9.

PMID:
28096043
19.

Keratin mediated attachment of stem cells to augment cardiomyogenic lineage commitment.

Ghosh LD, Ravi V, Sanpui P, Sundaresan NR, Chatterjee K.

Colloids Surf B Biointerfaces. 2017 Mar 1;151:178-188. doi: 10.1016/j.colsurfb.2016.12.023. Epub 2016 Dec 15.

PMID:
28012406
20.

SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 3β.

Sundaresan NR, Bindu S, Pillai VB, Samant S, Pan Y, Huang JY, Gupta M, Nagalingam RS, Wolfgeher D, Verdin E, Gupta MP.

Mol Cell Biol. 2015 Dec 14;36(5):678-92. doi: 10.1128/MCB.00586-15.

21.

Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity.

Samant SA, Pillai VB, Sundaresan NR, Shroff SG, Gupta MP.

J Biol Chem. 2015 Jun 19;290(25):15559-69. doi: 10.1074/jbc.M115.653048. Epub 2015 Apr 24.

22.

Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3.

Pillai VB, Samant S, Sundaresan NR, Raghuraman H, Kim G, Bonner MY, Arbiser JL, Walker DI, Jones DP, Gius D, Gupta MP.

Nat Commun. 2015 Apr 14;6:6656. doi: 10.1038/ncomms7656.

23.

Molecular profiling of sepsis in mice using Fourier Transform Infrared Microspectroscopy.

Gautam R, Deobagkar-Lele M, Majumdar S, Chandrasekar B, Victor E, Ahmed SM, Wadhwa N, Verma T, Kumar S, Sundaresan NR, Umapathy S, Nandi D.

J Biophotonics. 2016 Jan;9(1-2):67-82. doi: 10.1002/jbio.201400089. Epub 2015 Mar 23.

PMID:
25808727
24.

SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer.

Ming M, Han W, Zhao B, Sundaresan NR, Deng CX, Gupta MP, He YY.

Cancer Res. 2014 Oct 15;74(20):5925-33. doi: 10.1158/0008-5472.CAN-14-1308.

25.

Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor β (TGFβ1)-dependent paracrine mechanism.

Nagalingam RS, Sundaresan NR, Noor M, Gupta MP, Solaro RJ, Gupta M.

J Biol Chem. 2014 Sep 26;289(39):27199-214. doi: 10.1074/jbc.M114.580977. Epub 2014 Aug 7. Retraction in: J Biol Chem. 2017 Mar 24;292(12 ):5124.

26.

Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging.

Pillai VB, Sundaresan NR, Gupta MP.

Circ Res. 2014 Jan 17;114(2):368-78. doi: 10.1161/CIRCRESAHA.113.300536. Review.

27.

SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress.

Samant SA, Zhang HJ, Hong Z, Pillai VB, Sundaresan NR, Wolfgeher D, Archer SL, Chan DC, Gupta MP.

Mol Cell Biol. 2014 Mar;34(5):807-19. doi: 10.1128/MCB.01483-13. Epub 2013 Dec 16.

28.

In vitro rapid clearance of infectious bursal disease virus in peripheral blood mononuclear cells of chicken lines divergent for antibody response might be related to the enhanced expression of proinflammatory cytokines.

Jain P, Singh R, Saxena VK, Singh KB, Ahmed KA, Tiwari AK, Saxena M, Sundaresan NR.

Res Vet Sci. 2013 Dec;95(3):957-64. doi: 10.1016/j.rvsc.2013.08.018. Epub 2013 Sep 4.

PMID:
24075224
29.

Defective Nrf2-dependent redox signalling contributes to microvascular dysfunction in type 2 diabetes.

Velmurugan GV, Sundaresan NR, Gupta MP, White C.

Cardiovasc Res. 2013 Oct 1;100(1):143-50. doi: 10.1093/cvr/cvt125. Epub 2013 May 27.

30.

A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling.

Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ, Gupta M.

J Biol Chem. 2013 Apr 19;288(16):11216-32. doi: 10.1074/jbc.M112.442384. Epub 2013 Feb 27. Retraction in: J Biol Chem. 2017 Mar 24;292(12 ):5123.

31.

Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling.

Pillai VB, Sundaresan NR, Kim G, Samant S, Moreno-Vinasco L, Garcia JG, Gupta MP.

Am J Physiol Heart Circ Physiol. 2013 Feb 1;304(3):H415-26. doi: 10.1152/ajpheart.00468.2012. Epub 2012 Nov 30.

32.

The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun.

Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, Pillai VB, Ravindra PV, Gupta M, Jeevanandam V, Cunningham JM, Deng CX, Lombard DB, Mostoslavsky R, Gupta MP.

Nat Med. 2012 Nov;18(11):1643-50. doi: 10.1038/nm.2961. Epub 2012 Oct 21.

33.

Pathogenic properties of the N-terminal region of cardiac myosin binding protein-C in vitro.

Govindan S, Sarkey J, Ji X, Sundaresan NR, Gupta MP, de Tombe PP, Sadayappan S.

J Muscle Res Cell Motil. 2012 May;33(1):17-30. doi: 10.1007/s10974-012-9292-y. Epub 2012 Apr 17.

34.

A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: implications in postnatal cardiac remodeling and cell survival.

Knezevic I, Patel A, Sundaresan NR, Gupta MP, Solaro RJ, Nagalingam RS, Gupta M.

J Biol Chem. 2012 Apr 13;287(16):12913-26. doi: 10.1074/jbc.M111.331751. Epub 2012 Feb 24.

35.

The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy.

Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, Raghuraman H, Cunningham JM, Gupta M, Gupta MP.

Sci Signal. 2011 Jul 19;4(182):ra46. doi: 10.1126/scisignal.2001465.

36.

Acetylation of a conserved lysine residue in the ATP binding pocket of p38 augments its kinase activity during hypertrophy of cardiomyocytes.

Pillai VB, Sundaresan NR, Samant SA, Wolfgeher D, Trivedi CM, Gupta MP.

Mol Cell Biol. 2011 Jun;31(11):2349-63. doi: 10.1128/MCB.01205-10. Epub 2011 Mar 28.

37.

Emerging roles of SIRT1 deacetylase in regulating cardiomyocyte survival and hypertrophy.

Sundaresan NR, Pillai VB, Gupta MP.

J Mol Cell Cardiol. 2011 Oct;51(4):614-8. doi: 10.1016/j.yjmcc.2011.01.008. Epub 2011 Jan 27. Review.

38.

HDAC3-dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity.

Samant SA, Courson DS, Sundaresan NR, Pillai VB, Tan M, Zhao Y, Shroff SG, Rock RS, Gupta MP.

J Biol Chem. 2011 Feb 18;286(7):5567-77. doi: 10.1074/jbc.M110.163865. Epub 2010 Dec 21. Retraction in: J Biol Chem. 2015 Mar 6;290(10):6009.

39.

Mitochondrial SIRT3 and heart disease.

Pillai VB, Sundaresan NR, Jeevanandam V, Gupta MP.

Cardiovasc Res. 2010 Nov 1;88(2):250-6. doi: 10.1093/cvr/cvq250. Epub 2010 Aug 4. Review.

40.

Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway.

Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, Samant S, Ravindra PV, Isbatan A, Gupta MP.

J Biol Chem. 2010 Jan 29;285(5):3133-44. doi: 10.1074/jbc.M109.077271. Epub 2009 Nov 24.

41.

Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice.

Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP.

J Clin Invest. 2009 Sep;119(9):2758-71. doi: 10.1172/JCI39162. Epub 2009 Aug 3.

42.

SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1.

Rajamohan SB, Pillai VB, Gupta M, Sundaresan NR, Birukov KG, Samant S, Hottiger MO, Gupta MP.

Mol Cell Biol. 2009 Aug;29(15):4116-29. doi: 10.1128/MCB.00121-09. Epub 2009 May 26.

43.

SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70.

Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP.

Mol Cell Biol. 2008 Oct;28(20):6384-401. doi: 10.1128/MCB.00426-08. Epub 2008 Aug 18.

44.

Expression analysis of melatonin receptor subtypes in the ovary of domestic chicken.

Sundaresan NR, Marcus Leo MD, Subramani J, Anish D, Sudhagar M, Ahmed KA, Saxena M, Tyagi JS, Sastry KV, Saxena VK.

Vet Res Commun. 2009 Jan;33(1):49-56. doi: 10.1007/s11259-008-9071-9. Epub 2008 Jul 5.

PMID:
18604592
45.

Immune responses induced by DNA vaccines encoding Newcastle virus haemagglutinin and/or fusion proteins in maternal antibody-positive commercial broiler chicken.

Rajawat YS, Sundaresan NR, Ravindra PV, Kantaraja C, Ratta B, Sudhagar M, Rai A, Saxena VK, Palia SK, Tiwari AK.

Br Poult Sci. 2008 Mar;49(2):111-7. doi: 10.1080/00071660801939732.

PMID:
18409084
46.

High doses of dietary zinc induce cytokines, chemokines, and apoptosis in reproductive tissues during regression.

Sundaresan NR, Anish D, Sastry KV, Saxena VK, Nagarajan K, Subramani J, Leo MD, Shit N, Mohan J, Saxena M, Ahmed KA.

Cell Tissue Res. 2008 Jun;332(3):543-54. doi: 10.1007/s00441-008-0599-3. Epub 2008 Mar 20.

PMID:
18351392
47.

HN protein of Newcastle disease virus causes apoptosis in chicken embryo fibroblast cells.

Ravindra PV, Tiwari AK, Sharma B, Rajawat YS, Ratta B, Palia S, Sundaresan NR, Chaturvedi U, Gangaplara A, Chindera K, Saxena M, Subudhi PK, Rai A, Chauhan RS.

Arch Virol. 2008;153(4):749-54. doi: 10.1007/s00705-008-0057-2. Epub 2008 Feb 21. Erratum in: Arch Virol. 2014 Aug;159(8):2205. Kumar, G B Aruna [corrected to Gangaplara, Arunakumar].

PMID:
18288442
48.

Palladin is an actin cross-linking protein that uses immunoglobulin-like domains to bind filamentous actin.

Dixon RD, Arneman DK, Rachlin AS, Sundaresan NR, Costello MJ, Campbell SL, Otey CA.

J Biol Chem. 2008 Mar 7;283(10):6222-31. doi: 10.1074/jbc.M707694200. Epub 2008 Jan 7. Erratum in: J Biol Chem. 2008 Oct 3;283(40):27344.

49.

Expression profile of myostatin mRNA during the embryonic organogenesis of domestic chicken (Gallus gallus domesticus).

Sundaresan NR, Saxena VK, Singh R, Jain P, Singh KP, Anish D, Singh N, Saxena M, Ahmed KA.

Res Vet Sci. 2008 Aug;85(1):86-91. Epub 2007 Nov 26.

PMID:
18037460
50.

Immune response to Newcastle disease virus in chicken lines divergently selected for cutaneous hypersensitivity.

Ahmed KA, Saxena VK, Ara A, Singh KB, Sundaresan NR, Saxena M, Rasool TJ.

Int J Immunogenet. 2007 Dec;34(6):445-55.

PMID:
18001302

Supplemental Content

Loading ...
Support Center