Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in Clostridium acetobutylicum ATCC 824.

Servinsky MD, Renberg RL, Perisin MA, Gerlach ES, Liu S, Sund CJ.

mSystems. 2018 Oct 23;3(5). pii: e00064-18. doi: 10.1128/mSystems.00064-18. eCollection 2018 Sep-Oct.

2.
3.

Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105.

Germane KL, Servinsky MD, Gerlach ES, Sund CJ, Hurley MM.

Acta Crystallogr F Struct Biol Commun. 2015 Aug;71(Pt 8):1100-8. doi: 10.1107/S2053230X15012121. Epub 2015 Jul 29.

4.

Directed assembly of a bacterial quorum.

Servinsky MD, Terrell JL, Tsao CY, Wu HC, Quan DN, Zargar A, Allen PC, Byrd CM, Sund CJ, Bentley WE.

ISME J. 2016 Jan;10(1):158-69. doi: 10.1038/ismej.2015.89. Epub 2015 Jun 5.

5.

Phosphoketolase flux in Clostridium acetobutylicum during growth on L-arabinose.

Sund CJ, Liu S, Germane KL, Servinsky MD, Gerlach ES, Hurley MM.

Microbiology. 2015 Feb;161(Pt 2):430-40. doi: 10.1099/mic.0.000008. Epub 2014 Dec 6.

PMID:
25481877
6.

Fermentation of oxidized hexose derivatives by Clostridium acetobutylicum.

Servinsky MD, Liu S, Gerlach ES, Germane KL, Sund CJ.

Microb Cell Fact. 2014 Sep 18;13:139. doi: 10.1186/s12934-014-0139-7.

7.

Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824.

Servinsky MD, Germane KL, Liu S, Kiel JT, Clark AM, Shankar J, Sund CJ.

J Ind Microbiol Biotechnol. 2012 Dec;39(12):1859-67. doi: 10.1007/s10295-012-1186-x. Epub 2012 Aug 25.

PMID:
22922942
8.

Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum.

Servinsky MD, Kiel JT, Dupuy NF, Sund CJ.

Microbiology. 2010 Nov;156(Pt 11):3478-91. doi: 10.1099/mic.0.037085-0. Epub 2010 Jul 23.

PMID:
20656779
9.

Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell.

Finch AS, Mackie TD, Sund CJ, Sumner JJ.

Bioresour Technol. 2011 Jan;102(1):312-5. doi: 10.1016/j.biortech.2010.06.149. Epub 2010 Jul 23.

PMID:
20655198
10.

Mitigation of the effect of catholyte contamination in microbial fuel cells using a wicking air cathode.

Sund CJ, Wong MS, Sumner JJ.

Biosens Bioelectron. 2009 Jun 15;24(10):3144-7. doi: 10.1016/j.bios.2009.03.019. Epub 2009 Mar 24.

PMID:
19359159
11.

The Bacteroides fragilis transcriptome response to oxygen and H2O2: the role of OxyR and its effect on survival and virulence.

Sund CJ, Rocha ER, Tzianabos AO, Wells WG, Gee JM, Reott MA, O'Rourke DP, Smith CJ.

Mol Microbiol. 2008 Jan;67(1):129-42. Epub 2007 Nov 28. Erratum in: Mol Microbiol. 2008 Jun;68(5):1340. Tzinabos, Arthur O [corrected to Tzianabos, Arthur O].

12.

Effect of electron mediators on current generation and fermentation in a microbial fuel cell.

Sund CJ, McMasters S, Crittenden SR, Harrell LE, Sumner JJ.

Appl Microbiol Biotechnol. 2007 Sep;76(3):561-8. Epub 2007 Jun 12.

PMID:
17562040
13.

Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer.

Crittenden SR, Sund CJ, Sumner JJ.

Langmuir. 2006 Nov 7;22(23):9473-6.

PMID:
17073464
14.

Supplemental Content

Support Center