Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 52

1.

Proteins that physically interact with the phosphatase Cdc14 in Candida albicans have diverse roles in the cell cycle.

Kaneva IN, Sudbery IM, Dickman MJ, Sudbery PE.

Sci Rep. 2019 Apr 18;9(1):6258. doi: 10.1038/s41598-019-42530-1.

2.

Quantitative Proteomic Analysis in Candida albicans Using SILAC-Based Mass Spectrometry.

Kaneva IN, Longworth J, Sudbery PE, Dickman MJ.

Proteomics. 2018 Mar;18(5-6):e1700278. doi: 10.1002/pmic.201700278. Epub 2018 Feb 20.

3.

Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis.

Greig JA, Sudbery IM, Richardson JP, Naglik JR, Wang Y, Sudbery PE.

PLoS Pathog. 2015 Jan 24;11(1):e1004630. doi: 10.1371/journal.ppat.1004630. eCollection 2015 Jan.

4.

In Candida albicans hyphae, Sec2p is physically associated with SEC2 mRNA on secretory vesicles.

Caballero-Lima D, Hautbergue GM, Wilson SA, Sudbery PE.

Mol Microbiol. 2014 Nov;94(4):828-42. doi: 10.1111/mmi.12799. Epub 2014 Oct 14.

5.

In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension.

Caballero-Lima D, Sudbery PE.

Mol Biol Cell. 2014 Apr;25(7):1097-110. doi: 10.1091/mbc.E13-11-0688. Epub 2014 Feb 5.

6.

The spatial distribution of the exocyst and actin cortical patches is sufficient to organize hyphal tip growth.

Caballero-Lima D, Kaneva IN, Watton SP, Sudbery PE, Craven CJ.

Eukaryot Cell. 2013 Jul;12(7):998-1008. doi: 10.1128/EC.00085-13. Epub 2013 May 10.

7.

Growth of Candida albicans hyphae.

Sudbery PE.

Nat Rev Microbiol. 2011 Aug 16;9(10):737-48. doi: 10.1038/nrmicro2636. Review.

PMID:
21844880
8.

The mating projections of Saccharomyces cerevisiae and Candida albicans show key characteristics of hyphal growth.

Chapa-Y-Lazo B, Lee S, Regan H, Sudbery P.

Fungal Biol. 2011 Jun;115(6):547-56. doi: 10.1016/j.funbio.2011.02.001. Epub 2011 Feb 24.

PMID:
21640318
9.

Candida albicans, a major human fungal pathogen.

Kim J, Sudbery P.

J Microbiol. 2011 Apr;49(2):171-7. doi: 10.1007/s12275-011-1064-7. Epub 2011 May 3. Review.

PMID:
21538235
10.

Fluorescent proteins illuminate the structure and function of the hyphal tip apparatus.

Sudbery P.

Fungal Genet Biol. 2011 Sep;48(9):849-57. doi: 10.1016/j.fgb.2011.02.004. Epub 2011 Mar 22. Review.

PMID:
21362491
11.
12.

Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase.

Bishop A, Lane R, Beniston R, Chapa-y-Lazo B, Smythe C, Sudbery P.

EMBO J. 2010 Sep 1;29(17):2930-42. doi: 10.1038/emboj.2010.158. Epub 2010 Jul 16.

13.

Adhesion of Candida albicans to endothelial cells under physiological conditions of flow.

Grubb SE, Murdoch C, Sudbery PE, Saville SP, Lopez-Ribot JL, Thornhill MH.

Infect Immun. 2009 Sep;77(9):3872-8. doi: 10.1128/IAI.00518-09. Epub 2009 Jul 6.

14.

Evolution of pathogenicity and sexual reproduction in eight Candida genomes.

Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJ, Brunke S, Costanzo MC, Fitzpatrick DA, de Groot PW, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC, Schmitzberger FF, Sherlock G, Shah P, Silverstein KA, Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MP, Sudbery PE, Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NA, Lorenz MC, Birren BW, Kellis M, Cuomo CA.

Nature. 2009 Jun 4;459(7247):657-62. doi: 10.1038/nature08064.

15.

Whi2p links nutritional sensing to actin-dependent Ras-cAMP-PKA regulation and apoptosis in yeast.

Leadsham JE, Miller K, Ayscough KR, Colombo S, Martegani E, Sudbery P, Gourlay CW.

J Cell Sci. 2009 Mar 1;122(Pt 5):706-15. doi: 10.1242/jcs.042424. Epub 2009 Feb 10.

16.

Candida albicans-endothelial cell interactions: a key step in the pathogenesis of systemic candidiasis.

Grubb SE, Murdoch C, Sudbery PE, Saville SP, Lopez-Ribot JL, Thornhill MH.

Infect Immun. 2008 Oct;76(10):4370-7. doi: 10.1128/IAI.00332-08. Epub 2008 Jun 23. Review. No abstract available.

17.

Pathocycles.

Sudbery PE, Gladfelter AS.

Fungal Genet Biol. 2008 Jan;45(1):1-5. Epub 2007 Feb 28. No abstract available.

PMID:
17964832
18.
19.

Regulation of Cdc42 GTPase activity in the formation of hyphae in Candida albicans.

Court H, Sudbery P.

Mol Biol Cell. 2007 Jan;18(1):265-81. Epub 2006 Nov 8.

20.

Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae.

Crampin H, Finley K, Gerami-Nejad M, Court H, Gale C, Berman J, Sudbery P.

J Cell Sci. 2005 Jul 1;118(Pt 13):2935-47.

21.

The G1 cyclin Cln3 regulates morphogenesis in Candida albicans.

Chapa y Lazo B, Bates S, Sudbery P.

Eukaryot Cell. 2005 Jan;4(1):90-4.

22.

The distinct morphogenic states of Candida albicans.

Sudbery P, Gow N, Berman J.

Trends Microbiol. 2004 Jul;12(7):317-24. Review.

PMID:
15223059
23.

A synthetic lethal screen identifies a role for the cortical actin patch/endocytosis complex in the response to nutrient deprivation in Saccharomyces cerevisiae.

Care A, Vousden KA, Binley KM, Radcliffe P, Trevethick J, Mannazzu I, Sudbery PE.

Genetics. 2004 Feb;166(2):707-19.

24.

In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization.

Wightman R, Bates S, Amornrrattanapan P, Sudbery P.

J Cell Biol. 2004 Feb 16;164(4):581-91. Epub 2004 Feb 9.

25.

In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint.

Martinez-Anaya C, Dickinson JR, Sudbery PE.

J Cell Sci. 2003 Aug 15;116(Pt 16):3423-31. Epub 2003 Jul 2.

26.

Candida Albicans: a molecular revolution built on lessons from budding yeast.

Berman J, Sudbery PE.

Nat Rev Genet. 2002 Dec;3(12):918-30. Review.

PMID:
12459722
27.

Cell biology. When wee meets whi.

Sudbery P.

Science. 2002 Jul 19;297(5580):351-2. No abstract available.

PMID:
12130772
29.

Constitutive expression of recombinant proteins in the methylotrophic yeast Hansenula polymorpha using the PMA1 promoter.

Cox H, Mead D, Sudbery P, Eland RM, Mannazzu I, Evans L.

Yeast. 2000 Sep 30;16(13):1191-203.

30.

Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans.

Leng P, Sudbery PE, Brown AJ.

Mol Microbiol. 2000 Mar;35(5):1264-75. Erratum in: Mol Microbiol 2000 Jul;37(2):453.

31.

The MET3 promoter: a new tool for Candida albicans molecular genetics.

Care RS, Trevethick J, Binley KM, Sudbery PE.

Mol Microbiol. 1999 Nov;34(4):792-8.

32.
33.

Deregulation of CLN1 and CLN2 in the Saccharomyces cerevisiae whi2 mutant.

Radcliffe P, Trevethick J, Tyers M, Sudbery P.

Yeast. 1997 Jun 30;13(8):707-15.

34.

Filamentous growth of the budding yeast Saccharomyces cerevisiae induced by overexpression of the WHi2 gene.

Radcliffe PA, Binley KM, Trevethick J, Hall M, Sudbery PE.

Microbiology. 1997 Jun;143 ( Pt 6):1867-76.

PMID:
9202462
35.

The expression of recombinant proteins in yeasts.

Sudbery PE.

Curr Opin Biotechnol. 1996 Oct;7(5):517-24. Review.

PMID:
8939625
36.

Expression of the major bean proteins from Theobroma cacao (cocoa) in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae.

Yavuz MO, Ashton SM, Deakin ED, Spencer ME, Sudbery PE.

J Biotechnol. 1996 Apr 18;46(1):43-54.

PMID:
8672284
37.

The non-Saccharomyces yeasts.

Sudbery PE.

Yeast. 1994 Dec;10(13):1707-26. Review. No abstract available.

PMID:
7747514
38.

Expression of human thyroid peroxidase in the yeasts Saccharomyces cerevisiae and Hansenula polymorpha.

Wedlock N, Furmaniak J, Fowler S, Kiso Y, Bednarek J, Baumann-Antczak A, Morteo C, Sudbery P, Hinchcliff A, Rees Smith B.

J Mol Endocrinol. 1993 Jun;10(3):325-36.

PMID:
8373516
39.
40.

Development of a strain of Hansenula polymorpha for the efficient expression of guar alpha-galactosidase.

Veale RA, Giuseppin ML, van Eijk HM, Sudbery PE, Verrips CT.

Yeast. 1992 May;8(5):361-72. Erratum in: Yeast 1992 Sep;8(9):813.

PMID:
1320801
41.

Expression of the alpha-galactosidase from Cyamopsis tetragonoloba (guar) by Hansenula polymorpha.

Fellinger AJ, Verbakel JM, Veale RA, Sudbery PE, Bom IJ, Overbeeke N, Verrips CT.

Yeast. 1991 Jul;7(5):463-73.

PMID:
1654681
42.
43.

Regulation of the Saccharomyces cerevisiae WHI2 gene.

Mountain HA, Sudbery PE.

J Gen Microbiol. 1990 Apr;136(4):727-32.

PMID:
2204679
44.

Hansenula polymorpha as a novel yeast system for the expression of heterologous genes.

Sudbery PE, Gleeson MA, Veale RA, Ledeboer AM, Zoetmulder MC.

Biochem Soc Trans. 1988 Dec;16(6):1081-3.

PMID:
3224750
45.

The effect of dissolved oxygen concentration on the growth physiology of Saccharomyces cerevisiae whi2 mutants.

Rahman DR, Sudbery PE, Kelly S, Marison IW.

J Gen Microbiol. 1988 Aug;134(8):2241-8.

PMID:
3075657
46.

Transcript characterisation, gene disruption and nucleotide sequence of the Saccharomyces cerevisiae WH12 gene.

Kelly DE, Trevethick J, Mountain H, Sudbery PE.

Gene. 1988 Jun 30;66(2):205-13.

PMID:
3049245
47.
48.

Genes which control cell proliferation in the yeast Saccharomyces cerevisiae.

Sudbery PE, Goodey AR, Carter BL.

Nature. 1980 Nov 27;288(5789):401-4.

PMID:
7001255
49.

Small-sized mutants of Saccharomyces cerevisiae.

Carter BL, Sudbery PE.

Genetics. 1980 Nov;96(3):561-6.

Supplemental Content

Loading ...
Support Center