Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

Synergistic toxicity between tau and amyloid drives neuronal dysfunction and neurodegeneration in transgenic C. elegans.

Benbow SJ, Strovas TJ, Darvas M, Saxton A, Kraemer BC.

Hum Mol Genet. 2020 Feb 1;29(3):495-505. doi: 10.1093/hmg/ddz319.

PMID:
31943011
2.

Activity of the poly(A) binding protein MSUT2 determines susceptibility to pathological tau in the mammalian brain.

Wheeler JM, McMillan P, Strovas TJ, Liachko NF, Amlie-Wolf A, Kow RL, Klein RL, Szot P, Robinson L, Guthrie C, Saxton A, Kanaan NM, Raskind M, Peskind E, Trojanowski JQ, Lee VMY, Wang LS, Keene CD, Bird T, Schellenberg GD, Kraemer B.

Sci Transl Med. 2019 Dec 18;11(523). pii: eaao6545. doi: 10.1126/scitranslmed.aao6545.

PMID:
31852801
3.

Genome wide analysis reveals heparan sulfate epimerase modulates TDP-43 proteinopathy.

Liachko NF, Saxton AD, McMillan PJ, Strovas TJ, Keene CD, Bird TD, Kraemer BC.

PLoS Genet. 2019 Dec 13;15(12):e1008526. doi: 10.1371/journal.pgen.1008526. eCollection 2019 Dec.

4.

Constitutive XBP-1s-mediated activation of the endoplasmic reticulum unfolded protein response protects against pathological tau.

Waldherr SM, Strovas TJ, Vadset TA, Liachko NF, Kraemer BC.

Nat Commun. 2019 Sep 30;10(1):4443. doi: 10.1038/s41467-019-12070-3.

5.

Pathological phosphorylation of tau and TDP-43 by TTBK1 and TTBK2 drives neurodegeneration.

Taylor LM, McMillan PJ, Liachko NF, Strovas TJ, Ghetti B, Bird TD, Keene CD, Kraemer BC.

Mol Neurodegener. 2018 Feb 6;13(1):7. doi: 10.1186/s13024-018-0237-9.

6.

The phosphatase calcineurin regulates pathological TDP-43 phosphorylation.

Liachko NF, Saxton AD, McMillan PJ, Strovas TJ, Currey HN, Taylor LM, Wheeler JM, Oblak AL, Ghetti B, Montine TJ, Keene CD, Raskind MA, Bird TD, Kraemer BC.

Acta Neuropathol. 2016 Oct;132(4):545-61. doi: 10.1007/s00401-016-1600-y. Epub 2016 Jul 29.

7.

The tau tubulin kinases TTBK1/2 promote accumulation of pathological TDP-43.

Liachko NF, McMillan PJ, Strovas TJ, Loomis E, Greenup L, Murrell JR, Ghetti B, Raskind MA, Montine TJ, Bird TD, Leverenz JB, Kraemer BC.

PLoS Genet. 2014 Dec 4;10(12):e1004803. doi: 10.1371/journal.pgen.1004803. eCollection 2014 Dec.

8.

MicroRNA-based single-gene circuits buffer protein synthesis rates against perturbations.

Strovas TJ, Rosenberg AB, Kuypers BE, Muscat RA, Seelig G.

ACS Synth Biol. 2014 May 16;3(5):324-31. doi: 10.1021/sb4001867. Epub 2014 Jan 30.

PMID:
24847681
9.

Direct measurement of oxygen consumption rates from attached and unattached cells in a reversibly sealed, diffusionally isolated sample chamber.

Strovas TJ, McQuaide SC, Anderson JB, Nandakumar V, Kalyuzhnaya MG, Burgess LW, Holl MR, Meldrum DR, Lidstrom ME.

Adv Biosci Biotechnol. 2010 Dec 1;5(5):398-408.

10.

Respiration response imaging for real-time detection of microbial function at the single-cell level.

Konopka MC, Strovas TJ, Ojala DS, Chistoserdova L, Lidstrom ME, Kalyuzhnaya MG.

Appl Environ Microbiol. 2011 Jan;77(1):67-72. doi: 10.1128/AEM.01166-10. Epub 2010 Nov 12.

11.

A microwell array device capable of measuring single-cell oxygen consumption rates.

Molter TW, McQuaide SC, Suchorolski MT, Strovas TJ, Burgess LW, Meldrum DR, Lidstrom ME.

Sens Actuators B Chem. 2009 Jan 15;135(2):678-686.

12.

Population heterogeneity in Methylobacterium extorquens AM1.

Strovas TJ, Lidstrom ME.

Microbiology. 2009 Jun;155(Pt 6):2040-2048. doi: 10.1099/mic.0.025890-0. Epub 2009 Apr 21.

13.

Cell-to-cell heterogeneity in growth rate and gene expression in Methylobacterium extorquens AM1.

Strovas TJ, Sauter LM, Guo X, Lidstrom ME.

J Bacteriol. 2007 Oct;189(19):7127-33. Epub 2007 Jul 20.

14.

Measurement of respiration rates of Methylobacterium extorquens AM1 cultures by use of a phosphorescence-based sensor.

Strovas TJ, Dragavon JM, Hankins TJ, Callis JB, Burgess LW, Lidstrom ME.

Appl Environ Microbiol. 2006 Feb;72(2):1692-5.

Supplemental Content

Loading ...
Support Center