Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii.

Straub CT, Khatibi PA, Wang JP, Conway JM, Williams-Rhaesa AM, Peszlen IM, Chiang VL, Adams MWW, Kelly RM.

Nat Commun. 2019 Aug 7;10(1):3548. doi: 10.1038/s41467-019-11376-6.

2.

The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in 'Caldi World'.

Lee LL, Crosby JR, Rubinstein GM, Laemthong T, Bing RG, Straub CT, Adams MWW, Kelly RM.

Extremophiles. 2019 Jul 29. doi: 10.1007/s00792-019-01116-5. [Epub ahead of print] Review.

PMID:
31359136
3.

Lignocellulose solubilization and conversion by extremely thermophilic Caldicellulosiruptor bescii improves by maintaining metabolic activity.

Straub CT, Khatibi PA, Otten JK, Adams MWW, Kelly RM.

Biotechnol Bioeng. 2019 Aug;116(8):1901-1908. doi: 10.1002/bit.26993. Epub 2019 May 21.

PMID:
30982956
4.

Extreme thermophiles as emerging metabolic engineering platforms.

Crosby JR, Laemthong T, Lewis AM, Straub CT, Adams MW, Kelly RM.

Curr Opin Biotechnol. 2019 Oct;59:55-64. doi: 10.1016/j.copbio.2019.02.006. Epub 2019 Mar 12. Review.

PMID:
30875665
5.

A synthetic enzymatic pathway for extremely thermophilic acetone production based on the unexpectedly thermostable acetoacetate decarboxylase from Clostridium acetobutylicum.

Zeldes BM, Straub CT, Otten JK, Adams MWW, Kelly RM.

Biotechnol Bioeng. 2018 Dec;115(12):2951-2961. doi: 10.1002/bit.26829. Epub 2018 Oct 23.

PMID:
30199090
6.

Biotechnology of extremely thermophilic archaea.

Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM.

FEMS Microbiol Rev. 2018 Sep 1;42(5):543-578. doi: 10.1093/femsre/fuy012. Review.

7.

Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii.

Zurawski JV, Khatibi PA, Akinosho HO, Straub CT, Compton SH, Conway JM, Lee LL, Ragauskas AJ, Davison BH, Adams MWW, Kelly RM.

Appl Environ Microbiol. 2017 Aug 17;83(17). pii: e00969-17. doi: 10.1128/AEM.00969-17. Print 2017 Sep 1.

8.

Extremely thermophilic energy metabolisms: biotechnological prospects.

Straub CT, Zeldes BM, Schut GJ, Adams MW, Kelly RM.

Curr Opin Biotechnol. 2017 Jun;45:104-112. doi: 10.1016/j.copbio.2017.02.016. Epub 2017 Mar 16. Review.

PMID:
28319854
9.

Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms.

Counts JA, Zeldes BM, Lee LL, Straub CT, Adams MWW, Kelly RM.

Wiley Interdiscip Rev Syst Biol Med. 2017 May;9(3). doi: 10.1002/wsbm.1377. Epub 2017 Feb 16. Review.

10.

Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals.

Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MW, Kelly RM.

Front Microbiol. 2015 Nov 5;6:1209. doi: 10.3389/fmicb.2015.01209. eCollection 2015. Review.

11.

The zebra fish cassiopeia mutant reveals that SIL is required for mitotic spindle organization.

Pfaff KL, Straub CT, Chiang K, Bear DM, Zhou Y, Zon LI.

Mol Cell Biol. 2007 Aug;27(16):5887-97. Epub 2007 Jun 18.

12.

A chemical genetic screen for cell cycle inhibitors in zebrafish embryos.

Murphey RD, Stern HM, Straub CT, Zon LI.

Chem Biol Drug Des. 2006 Oct;68(4):213-9.

PMID:
17105485
13.

Small molecules that delay S phase suppress a zebrafish bmyb mutant.

Stern HM, Murphey RD, Shepard JL, Amatruda JF, Straub CT, Pfaff KL, Weber G, Tallarico JA, King RW, Zon LI.

Nat Chem Biol. 2005 Dec;1(7):366-70.

PMID:
16372403

Supplemental Content

Loading ...
Support Center