Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 27

1.

Sexually Dimorphic Effects of Dietary Methionine Restriction are Dependent on Age when the Diet is Introduced.

Forney LA, Stone KP, Gibson AN, Vick AM, Sims LC, Fang H, Gettys TW.

Obesity (Silver Spring). 2020 Feb 3. doi: 10.1002/oby.22721. [Epub ahead of print]

PMID:
32012481
2.

High levels of dietary methionine improves sitagliptin-induced hepatotoxicity by attenuating oxidative stress in hypercholesterolemic rats.

Kumar A, Pathak R, Palfrey HA, Stone KP, Gettys TW, Murthy SN.

Nutr Metab (Lond). 2020 Jan 6;17:2. doi: 10.1186/s12986-019-0422-z. eCollection 2020.

3.

The incretin enhancer, sitagliptin, exacerbates expression of hepatic inflammatory markers in rats fed a high-cholesterol diet.

Pathak R, Kumar A, Palfrey HA, Forney LA, Stone KP, Raju NR, Gettys TW, Murthy SN.

Inflamm Res. 2019 Jul;68(7):581-595. doi: 10.1007/s00011-019-01243-x. Epub 2019 May 9.

PMID:
31073849
4.

The Components of Age-Dependent Effects of Dietary Methionine Restriction on Energy Balance in Rats.

Wanders D, Forney LA, Stone KP, Hasek BE, Johnson WD, Gettys TW.

Obesity (Silver Spring). 2018 Apr;26(4):740-746. doi: 10.1002/oby.22146. Epub 2018 Mar 4.

5.

Sensing and signaling mechanisms linking dietary methionine restriction to the behavioral and physiological components of the response.

Forney LA, Stone KP, Wanders D, Gettys TW.

Front Neuroendocrinol. 2018 Oct;51:36-45. doi: 10.1016/j.yfrne.2017.12.002. Epub 2017 Dec 21. Review.

6.

The role of suppression of hepatic SCD1 expression in the metabolic effects of dietary methionine restriction.

Forney LA, Stone KP, Wanders D, Ntambi JM, Gettys TW.

Appl Physiol Nutr Metab. 2018 Feb;43(2):123-130. doi: 10.1139/apnm-2017-0404. Epub 2017 Oct 5.

7.

An integrative analysis of tissue-specific transcriptomic and metabolomic responses to short-term dietary methionine restriction in mice.

Ghosh S, Forney LA, Wanders D, Stone KP, Gettys TW.

PLoS One. 2017 May 16;12(5):e0177513. doi: 10.1371/journal.pone.0177513. eCollection 2017.

8.

Concentration-dependent linkage of dietary methionine restriction to the components of its metabolic phenotype.

Forney LA, Wanders D, Stone KP, Pierse A, Gettys TW.

Obesity (Silver Spring). 2017 Apr;25(4):730-738. doi: 10.1002/oby.21806. Epub 2017 Mar 6.

9.

FGF21 Mediates the Thermogenic and Insulin-Sensitizing Effects of Dietary Methionine Restriction but Not Its Effects on Hepatic Lipid Metabolism.

Wanders D, Forney LA, Stone KP, Burk DH, Pierse A, Gettys TW.

Diabetes. 2017 Apr;66(4):858-867. doi: 10.2337/db16-1212. Epub 2017 Jan 17.

10.

Infected Congenital Epicardial Cyst Presenting as Acute Abdomen.

Dribin T, Files MD, Rudzinski ER, Kaplan R, Stone KP.

Pediatr Emerg Care. 2016 Dec;32(12):868-871.

PMID:
27902675
11.

Role of GCN2-Independent Signaling Through a Noncanonical PERK/NRF2 Pathway in the Physiological Responses to Dietary Methionine Restriction.

Wanders D, Stone KP, Forney LA, Cortez CC, Dille KN, Simon J, Xu M, Hotard EC, Nikonorova IA, Pettit AP, Anthony TG, Gettys TW.

Diabetes. 2016 Jun;65(6):1499-510. doi: 10.2337/db15-1324. Epub 2016 Mar 2.

12.

Metabolic responses to dietary leucine restriction involve remodeling of adipose tissue and enhanced hepatic insulin signaling.

Wanders D, Stone KP, Dille K, Simon J, Pierse A, Gettys TW.

Biofactors. 2015 Nov-Dec;41(6):391-402. doi: 10.1002/biof.1240. Epub 2015 Dec 8.

13.

Compromised responses to dietary methionine restriction in adipose tissue but not liver of ob/ob mice.

Stone KP, Wanders D, Calderon LF, Spurgin SB, Scherer PE, Gettys TW.

Obesity (Silver Spring). 2015 Sep;23(9):1836-44. doi: 10.1002/oby.21177. Epub 2015 Aug 3.

14.

Simulation in Pediatric Emergency Medicine Fellowships.

Doughty CB, Kessler DO, Zuckerbraun NS, Stone KP, Reid JR, Kennedy CS, Nypaver MM, Auerbach MA.

Pediatrics. 2015 Jul;136(1):e152-8. doi: 10.1542/peds.2014-4158. Epub 2015 Jun 8.

15.

UCP1 is an essential mediator of the effects of methionine restriction on energy balance but not insulin sensitivity.

Wanders D, Burk DH, Cortez CC, Van NT, Stone KP, Baker M, Mendoza T, Mynatt RL, Gettys TW.

FASEB J. 2015 Jun;29(6):2603-15. doi: 10.1096/fj.14-270348. Epub 2015 Mar 5.

16.

Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice.

Stone KP, Wanders D, Orgeron M, Cortez CC, Gettys TW.

Diabetes. 2014 Nov;63(11):3721-33. doi: 10.2337/db14-0464. Epub 2014 Jun 19.

17.

A systems biology analysis of the unique and overlapping transcriptional responses to caloric restriction and dietary methionine restriction in rats.

Ghosh S, Wanders D, Stone KP, Van NT, Cortez CC, Gettys TW.

FASEB J. 2014 Jun;28(6):2577-90. doi: 10.1096/fj.14-249458. Epub 2014 Feb 26.

18.

The impact of dietary methionine restriction on biomarkers of metabolic health.

Orgeron ML, Stone KP, Wanders D, Cortez CC, Van NT, Gettys TW.

Prog Mol Biol Transl Sci. 2014;121:351-76. doi: 10.1016/B978-0-12-800101-1.00011-9.

19.

Transcriptional impact of dietary methionine restriction on systemic inflammation: relevance to biomarkers of metabolic disease during aging.

Wanders D, Ghosh S, Stone KP, Van NT, Gettys TW.

Biofactors. 2014 Jan-Feb;40(1):13-26. doi: 10.1002/biof.1111. Epub 2013 Jun 29. Review.

20.

Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats.

Hasek BE, Boudreau A, Shin J, Feng D, Hulver M, Van NT, Laque A, Stewart LK, Stone KP, Wanders D, Ghosh S, Pessin JE, Gettys TW.

Diabetes. 2013 Oct;62(10):3362-72. doi: 10.2337/db13-0501. Epub 2013 Jun 25.

21.

NFĸB is an unexpected major mediator of interleukin-15 signaling in cerebral endothelia.

Stone KP, Kastin AJ, Pan W.

Cell Physiol Biochem. 2011;28(1):115-24. doi: 10.1159/000331720. Epub 2011 Aug 16.

22.

Cytokine signaling modulates blood-brain barrier function.

Pan W, Stone KP, Hsuchou H, Manda VK, Zhang Y, Kastin AJ.

Curr Pharm Des. 2011 Nov;17(33):3729-40. Review.

23.

Effects of cell-type specific leptin receptor mutation on leptin transport across the BBB.

Hsuchou H, Kastin AJ, Tu H, Markadakis EN, Stone KP, Wang Y, Heymsfield SB, Chua SS Jr, Obici S, Magrisso IJ, Pan W.

Peptides. 2011 Jul;32(7):1392-9. doi: 10.1016/j.peptides.2011.05.011. Epub 2011 May 17.

24.

Rapid endocytosis of interleukin-15 by cerebral endothelia.

Stone KP, Kastin AJ, Hsuchou H, Yu C, Pan W.

J Neurochem. 2011 Feb;116(4):544-53. doi: 10.1111/j.1471-4159.2010.07142.x. Epub 2011 Jan 19.

25.

Interleukin-15 affects serotonin system and exerts antidepressive effects through IL15Rα receptor.

Wu X, Hsuchou H, Kastin AJ, He Y, Khan RS, Stone KP, Cash MS, Pan W.

Psychoneuroendocrinology. 2011 Feb;36(2):266-78. doi: 10.1016/j.psyneuen.2010.07.017. Epub 2010 Aug 17.

26.

Brain Activation by Peptide Pro-Leu-Gly-NH(2) (MIF-1).

Khan RS, Yu C, Kastin AJ, He Y, Ehrensing RH, Hsuchou H, Stone KP, Pan W.

Int J Pept. 2010;2010. pii: 537639. doi: 10.1155/2010/537639. Epub 2010 Mar 28.

27.

Expression and signaling of novel IL15Ralpha splicing variants in cerebral endothelial cells of the blood-brain barrier.

Wu X, Pan W, Stone KP, Zhang Y, Hsuchou H, Kastin AJ.

J Neurochem. 2010 Jul;114(1):122-9. doi: 10.1111/j.1471-4159.2010.06729.x. Epub 2010 Apr 2.

Supplemental Content

Loading ...
Support Center