Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription.

Herdman C, Mars JC, Stefanovsky VY, Tremblay MG, Sabourin-Felix M, Lindsay H, Robinson MD, Moss T.

PLoS Genet. 2017 Jul 17;13(7):e1006899. doi: 10.1371/journal.pgen.1006899. eCollection 2017 Jul.

2.

Disruption of the UBF gene induces aberrant somatic nucleolar bodies and disrupts embryo nucleolar precursor bodies.

Hamdane N, Tremblay MG, Dillinger S, Stefanovsky VY, Németh A, Moss T.

Gene. 2017 May 15;612:5-11. doi: 10.1016/j.gene.2016.09.013. Epub 2016 Sep 8.

PMID:
27614293
3.

Metabolic Labeling in the Study of Mammalian Ribosomal RNA Synthesis.

Stefanovsky VY, Moss T.

Methods Mol Biol. 2016;1455:133-45. doi: 10.1007/978-1-4939-3792-9_11.

PMID:
27576716
4.

The Cruciform DNA Mobility Shift Assay: A Tool to Study Proteins That Recognize Bent DNA.

Stefanovsky VY, Moss T.

Methods Mol Biol. 2015;1334:195-203. doi: 10.1007/978-1-4939-2877-4_12.

PMID:
26404151
5.

Depletion of the cisplatin targeted HMGB-box factor UBF selectively induces p53-independent apoptotic death in transformed cells.

Hamdane N, Herdman C, Mars JC, Stefanovsky V, Tremblay MG, Moss T.

Oncotarget. 2015 Sep 29;6(29):27519-36. doi: 10.18632/oncotarget.4823.

6.

Conditional inactivation of Upstream Binding Factor reveals its epigenetic functions and the existence of a somatic nucleolar precursor body.

Hamdane N, Stefanovsky VY, Tremblay MG, Németh A, Paquet E, Lessard F, Sanij E, Hannan R, Moss T.

PLoS Genet. 2014 Aug 14;10(8):e1004505. doi: 10.1371/journal.pgen.1004505. eCollection 2014 Aug.

7.

The cellular abundance of the essential transcription termination factor TTF-I regulates ribosome biogenesis and is determined by MDM2 ubiquitinylation.

Lessard F, Stefanovsky V, Tremblay MG, Moss T.

Nucleic Acids Res. 2012 Jul;40(12):5357-67. doi: 10.1093/nar/gks198. Epub 2012 Mar 1.

8.

A model for the topology of active ribosomal RNA genes.

Denissov S, Lessard F, Mayer C, Stefanovsky V, van Driel M, Grummt I, Moss T, Stunnenberg HG.

EMBO Rep. 2011 Mar;12(3):231-7. doi: 10.1038/embor.2011.8. Epub 2011 Feb 18.

9.

The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase I transcription factor TTF-I.

Lessard F, Morin F, Ivanchuk S, Langlois F, Stefanovsky V, Rutka J, Moss T.

Mol Cell. 2010 May 28;38(4):539-50. doi: 10.1016/j.molcel.2010.03.015.

10.

Loss of human ribosomal gene CpG methylation enhances cryptic RNA polymerase II transcription and disrupts ribosomal RNA processing.

Gagnon-Kugler T, Langlois F, Stefanovsky V, Lessard F, Moss T.

Mol Cell. 2009 Aug 28;35(4):414-25. doi: 10.1016/j.molcel.2009.07.008.

11.

The cruciform DNA mobility shift assay: a tool to study proteins that recognize bent DNA.

Stefanovsky VY, Moss T.

Methods Mol Biol. 2009;543:537-46. doi: 10.1007/978-1-60327-015-1_31.

PMID:
19378185
12.

UBF levels determine the number of active ribosomal RNA genes in mammals.

Sanij E, Poortinga G, Sharkey K, Hung S, Holloway TP, Quin J, Robb E, Wong LH, Thomas WG, Stefanovsky V, Moss T, Rothblum L, Hannan KM, McArthur GA, Pearson RB, Hannan RD.

J Cell Biol. 2008 Dec 29;183(7):1259-74. doi: 10.1083/jcb.200805146. Epub 2008 Dec 22.

13.

The splice variants of UBF differentially regulate RNA polymerase I transcription elongation in response to ERK phosphorylation.

Stefanovsky VY, Moss T.

Nucleic Acids Res. 2008 Sep;36(15):5093-101. doi: 10.1093/nar/gkn484. Epub 2008 Aug 1.

14.

A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis.

Moss T, Langlois F, Gagnon-Kugler T, Stefanovsky V.

Cell Mol Life Sci. 2007 Jan;64(1):29-49. Review.

PMID:
17171232
15.

A new paradigm for the regulation of the mammalian ribosomal RNA genes.

Moss T, Stefanovsky V, Langlois F, Gagnon-Kugler T.

Biochem Soc Trans. 2006 Dec;34(Pt 6):1079-81.

PMID:
17073755
16.

Regulation of rRNA synthesis in human and mouse cells is not determined by changes in active gene count.

Stefanovsky V, Moss T.

Cell Cycle. 2006 Apr;5(7):735-9. Epub 2006 Apr 1.

PMID:
16582637
17.

ERK modulates DNA bending and enhancesome structure by phosphorylating HMG1-boxes 1 and 2 of the RNA polymerase I transcription factor UBF.

Stefanovsky VY, Langlois F, Bazett-Jones D, Pelletier G, Moss T.

Biochemistry. 2006 Mar 21;45(11):3626-34.

PMID:
16533045
18.

Growth factor signaling regulates elongation of RNA polymerase I transcription in mammals via UBF phosphorylation and r-chromatin remodeling.

Stefanovsky V, Langlois F, Gagnon-Kugler T, Rothblum LI, Moss T.

Mol Cell. 2006 Mar 3;21(5):629-39.

19.

At the center of eukaryotic life.

Moss T, Stefanovsky VY.

Cell. 2002 May 31;109(5):545-8. Review.

20.

An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF.

Stefanovsky VY, Pelletier G, Hannan R, Gagnon-Kugler T, Rothblum LI, Moss T.

Mol Cell. 2001 Nov;8(5):1063-73.

21.

DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules.

Stefanovsky VY, Pelletier G, Bazett-Jones DP, Crane-Robinson C, Moss T.

Nucleic Acids Res. 2001 Aug 1;29(15):3241-7.

22.

Competitive recruitment of CBP and Rb-HDAC regulates UBF acetylation and ribosomal transcription.

Pelletier G, Stefanovsky VY, Faubladier M, Hirschler-Laszkiewicz I, Savard J, Rothblum LI, Côté J, Moss T.

Mol Cell. 2000 Nov;6(5):1059-66.

23.

Cellular regulation of ribosomal DNA transcription:both rat and Xenopus UBF1 stimulate rDNA transcription in 3T3 fibroblasts.

Hannan R, Stefanovsky V, Arino T, Rothblum L, Moss T.

Nucleic Acids Res. 1999 Feb 15;27(4):1205-13.

24.

The DNA supercoiling architecture induced by the transcription factor xUBF requires three of its five HMG-boxes.

Stefanovsky VY, Bazett-Jones DP, Pelletier G, Moss T.

Nucleic Acids Res. 1996 Aug 15;24(16):3208-15.

25.
26.

Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I.

Moss T, Stefanovsky VY.

Prog Nucleic Acid Res Mol Biol. 1995;50:25-66. Review. No abstract available.

PMID:
7754036
28.
29.

Binding of histones to Xenopus laevis ribosomal genes with different levels of expression.

Dimitrov SI, Tateossyan HN, Stefanovsky VYu, Russanova VR, Karagyozov L, Pashev IG.

Eur J Biochem. 1992 Mar 15;204(3):977-81.

30.

The enhancers and promoters of the Xenopus laevis ribosomal spacer are associated with histones upon active transcription of the ribosomal genes.

Dimitrov SI, Stefanovsky VYu, Karagyozov L, Angelov D, Pashev IG.

Nucleic Acids Res. 1990 Nov 11;18(21):6393-7.

31.

Histones H1 and H4 are present near the replication fork.

Stefanovsky V, Dimitrov S, Russanova V, Pashev I.

Mol Biol Rep. 1990 Nov;14(4):231-5.

PMID:
2094801
32.

Laser-induced crosslinking of histones to DNA in chromatin and core particles: implications in studying histone-DNA interactions.

Stefanovsky VYu, Dimitrov SI, Russanova VR, Angelov D, Pashev IG.

Nucleic Acids Res. 1989 Dec 11;17(23):10069-81.

33.

Interactions of acetylated histones with DNA as revealed by UV laser induced histone-DNA crosslinking.

Stefanovsky VYu, Dimitrov SI, Angelov D, Pashev IG.

Biochem Biophys Res Commun. 1989 Oct 16;164(1):304-10.

PMID:
2803304
34.

Protein-DNA crosslinking in reconstituted nucleohistone, nuclei and whole cells by picosecond UV laser irradiation.

Angelov D, Stefanovsky VYu, Dimitrov SI, Russanova VR, Keskinova E, Pashev IG.

Nucleic Acids Res. 1988 May 25;16(10):4525-38.

Supplemental Content

Loading ...
Support Center