Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 32

1.

Evaluation of Methods to Assess in vivo Activity of Engineered Genome-Editing Nucleases in Protoplasts.

Nadakuduti SS, Starker CG, Ko DK, Jayakody TB, Buell CR, Voytas DF, Douches DS.

Front Plant Sci. 2019 Feb 8;10:110. doi: 10.3389/fpls.2019.00110. eCollection 2019.

2.

Genome Editing in Potato with CRISPR/Cas9.

Nadakuduti SS, Starker CG, Voytas DF, Buell CR, Douches DS.

Methods Mol Biol. 2019;1917:183-201. doi: 10.1007/978-1-4939-8991-1_14.

PMID:
30610637
3.

Genome Editing for Crop Improvement - Applications in Clonally Propagated Polyploids With a Focus on Potato (Solanum tuberosum L.).

Nadakuduti SS, Buell CR, Voytas DF, Starker CG, Douches DS.

Front Plant Sci. 2018 Nov 13;9:1607. doi: 10.3389/fpls.2018.01607. eCollection 2018.

4.

Essential nucleotide- and protein-dependent functions of Actb/β-actin.

Patrinostro X, Roy P, Lindsay A, Chamberlain CM, Sundby LJ, Starker CG, Voytas DF, Ervasti JM, Perrin BJ.

Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):7973-7978. doi: 10.1073/pnas.1807895115. Epub 2018 Jul 16.

5.

Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana.

He J, Xu M, Willmann MR, McCormick K, Hu T, Yang L, Starker CG, Voytas DF, Meyers BC, Poethig RS.

PLoS Genet. 2018 Apr 19;14(4):e1007337. doi: 10.1371/journal.pgen.1007337. eCollection 2018 Apr.

6.

Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava.

Hummel AW, Chauhan RD, Cermak T, Mutka AM, Vijayaraghavan A, Boyher A, Starker CG, Bart R, Voytas DF, Taylor NJ.

Plant Biotechnol J. 2018 Jul;16(7):1275-1282. doi: 10.1111/pbi.12868. Epub 2018 Jan 22.

7.

Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs.

Holme IB, Wendt T, Gil-Humanes J, Deleuran LC, Starker CG, Voytas DF, Brinch-Pedersen H.

Plant Mol Biol. 2017 Sep;95(1-2):111-121. doi: 10.1007/s11103-017-0640-6. Epub 2017 Jul 28.

PMID:
28755320
8.

A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants.

Čermák T, Curtin SJ, Gil-Humanes J, Čegan R, Kono TJY, Konečná E, Belanto JJ, Starker CG, Mathre JW, Greenstein RL, Voytas DF.

Plant Cell. 2017 Jun;29(6):1196-1217. doi: 10.1105/tpc.16.00922. Epub 2017 May 18.

9.

Downregulation of Plzf Gene Ameliorates Metabolic and Cardiac Traits in the Spontaneously Hypertensive Rat.

Liška F, Landa V, Zídek V, Mlejnek P, Šilhavý J, Šimáková M, Strnad H, Trnovská J, Škop V, Kazdová L, Starker CG, Voytas DF, Izsvák Z, Mancini M, Šeda O, Křen V, Pravenec M.

Hypertension. 2017 Jun;69(6):1084-1091. doi: 10.1161/HYPERTENSIONAHA.116.08798. Epub 2017 Apr 10.

PMID:
28396530
10.

Vimentin Intermediate Filaments Template Microtubule Networks to Enhance Persistence in Cell Polarity and Directed Migration.

Gan Z, Ding L, Burckhardt CJ, Lowery J, Zaritsky A, Sitterley K, Mota A, Costigliola N, Starker CG, Voytas DF, Tytell J, Goldman RD, Danuser G.

Cell Syst. 2016 Nov 23;3(5):500-501. doi: 10.1016/j.cels.2016.11.011. No abstract available.

11.

Targeting of the Plzf Gene in the Rat by Transcription Activator-Like Effector Nuclease Results in Caudal Regression Syndrome in Spontaneously Hypertensive Rats.

Liška F, Peterková R, Peterka M, Landa V, Zídek V, Mlejnek P, Šilhavý J, Šimáková M, Křen V, Starker CG, Voytas DF, Izsvák Z, Pravenec M.

PLoS One. 2016 Oct 11;11(10):e0164206. doi: 10.1371/journal.pone.0164206. eCollection 2016.

12.

Vimentin Intermediate Filaments Template Microtubule Networks to Enhance Persistence in Cell Polarity and Directed Migration.

Gan Z, Ding L, Burckhardt CJ, Lowery J, Zaritsky A, Sitterley K, Mota A, Costigliola N, Starker CG, Voytas DF, Tytell J, Goldman RD, Danuser G.

Cell Syst. 2016 Sep 28;3(3):252-263.e8. doi: 10.1016/j.cels.2016.08.007. Epub 2016 Sep 22. Erratum in: Cell Syst. 2016 Nov 23;3(5):500-501.

13.

Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases.

Osborn MJ, Webber BR, Knipping F, Lonetree CL, Tennis N, DeFeo AP, McElroy AN, Starker CG, Lee C, Merkel S, Lund TC, Kelly-Spratt KS, Jensen MC, Voytas DF, von Kalle C, Schmidt M, Gabriel R, Hippen KL, Miller JS, Scharenberg AM, Tolar J, Blazar BR.

Mol Ther. 2016 Mar;24(3):570-81. doi: 10.1038/mt.2015.197. Epub 2015 Oct 27.

14.

Fanconi anemia gene editing by the CRISPR/Cas9 system.

Osborn MJ, Gabriel R, Webber BR, DeFeo AP, McElroy AN, Jarjour J, Starker CG, Wagner JE, Joung JK, Voytas DF, von Kalle C, Schmidt M, Blazar BR, Tolar J.

Hum Gene Ther. 2015 Feb;26(2):114-26. doi: 10.1089/hum.2014.111.

15.

Efficient design and assembly of custom TALENs using the Golden Gate platform.

Cermak T, Starker CG, Voytas DF.

Methods Mol Biol. 2015;1239:133-59. doi: 10.1007/978-1-4939-1862-1_7.

PMID:
25408404
16.

Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases.

Lor VS, Starker CG, Voytas DF, Weiss D, Olszewski NE.

Plant Physiol. 2014 Nov;166(3):1288-91. doi: 10.1104/pp.114.247593. Epub 2014 Sep 12. No abstract available.

17.

TAL effector specificity for base 0 of the DNA target is altered in a complex, effector- and assay-dependent manner by substitutions for the tryptophan in cryptic repeat -1.

Doyle EL, Hummel AW, Demorest ZL, Starker CG, Voytas DF, Bradley P, Bogdanove AJ.

PLoS One. 2013 Dec 3;8(12):e82120. doi: 10.1371/journal.pone.0082120. eCollection 2013.

18.

Tailor-made mutations in Arabidopsis using zinc finger nucleases.

Qi Y, Starker CG, Zhang F, Baltes NJ, Voytas DF.

Methods Mol Biol. 2014;1062:193-209. doi: 10.1007/978-1-62703-580-4_10.

PMID:
24057367
19.

Gene silencing in Medicago truncatula roots using RNAi.

Floss DS, Schmitz AM, Starker CG, Gantt JS, Harrison MJ.

Methods Mol Biol. 2013;1069:163-77. doi: 10.1007/978-1-62703-613-9_12.

PMID:
23996315
20.

Targeted mutagenesis for functional analysis of gene duplication in legumes.

Curtin SJ, Anderson JE, Starker CG, Baltes NJ, Mani D, Voytas DF, Stupar RM.

Methods Mol Biol. 2013;1069:25-42. doi: 10.1007/978-1-62703-613-9_3.

PMID:
23996306
21.

Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases.

Qi Y, Li X, Zhang Y, Starker CG, Baltes NJ, Zhang F, Sander JD, Reyon D, Joung JK, Voytas DF.

G3 (Bethesda). 2013 Oct 3;3(10):1707-15. doi: 10.1534/g3.113.006270.

22.

TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants.

Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB.

Plant Mol Biol. 2013 Oct;83(3):279-85. doi: 10.1007/s11103-013-0078-4. Epub 2013 May 21.

PMID:
23689819
23.

TALEN-based gene correction for epidermolysis bullosa.

Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ, Xia L, DeFeo AP, Gabriel R, Schmidt M, von Kalle C, Carlson DF, Maeder ML, Joung JK, Wagner JE, Voytas DF, Blazar BR, Tolar J.

Mol Ther. 2013 Jun;21(6):1151-9. doi: 10.1038/mt.2013.56. Epub 2013 Apr 2.

24.

Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways.

Qi Y, Zhang Y, Zhang F, Baller JA, Cleland SC, Ryu Y, Starker CG, Voytas DF.

Genome Res. 2013 Mar;23(3):547-54. doi: 10.1101/gr.145557.112. Epub 2013 Jan 2.

25.

Transcription activator-like effector nucleases enable efficient plant genome engineering.

Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF.

Plant Physiol. 2013 Jan;161(1):20-7. doi: 10.1104/pp.112.205179. Epub 2012 Nov 2.

26.

Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues.

Christian ML, Demorest ZL, Starker CG, Osborn MJ, Nyquist MD, Zhang Y, Carlson DF, Bradley P, Bogdanove AJ, Voytas DF.

PLoS One. 2012;7(9):e45383. doi: 10.1371/journal.pone.0045383. Epub 2012 Sep 24.

27.

In vivo genome editing using a high-efficiency TALEN system.

Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG 2nd, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC.

Nature. 2012 Nov 1;491(7422):114-8. doi: 10.1038/nature11537. Epub 2012 Sep 23.

28.

Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome.

Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ.

PLoS Genet. 2012;8(8):e1002861. doi: 10.1371/journal.pgen.1002861. Epub 2012 Aug 16.

29.

Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis.

Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ.

Plant J. 2010 Feb 1;61(3):482-94. doi: 10.1111/j.1365-313X.2009.04072.x. Epub 2009 Nov 14.

30.

Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus.

Reinders A, Sivitz AB, Starker CG, Gantt JS, Ward JM.

Plant Mol Biol. 2008 Oct;68(3):289-99. doi: 10.1007/s11103-008-9370-0. Epub 2008 Jul 10.

PMID:
18618272
31.

An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction.

Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kaló P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, VandenBosch K, Long SR, Cook DR, Kiss GB, Oldroyd GE.

Plant Cell. 2007 Apr;19(4):1221-34. Epub 2007 Apr 20.

32.

Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression.

Starker CG, Parra-Colmenares AL, Smith L, Mitra RM, Long SR.

Plant Physiol. 2006 Feb;140(2):671-80. Epub 2006 Jan 11.

Supplemental Content

Loading ...
Support Center