Format
Sort by

Send to

Choose Destination

Search results

Items: 5

1.

Sensitivity to ocean acidification differs between populations of the Sydney rock oyster: Role of filtration and ion-regulatory capacities.

Stapp LS, Parker LM, O'Connor WA, Bock C, Ross PM, Pörtner HO, Lannig G.

Mar Environ Res. 2018 Apr;135:103-113. doi: 10.1016/j.marenvres.2017.12.017. Epub 2017 Dec 18.

PMID:
29428529
2.

Naturally acidified habitat selects for ocean acidification-tolerant mussels.

Thomsen J, Stapp LS, Haynert K, Schade H, Danelli M, Lannig G, Wegner KM, Melzner F.

Sci Adv. 2017 Apr 26;3(4):e1602411. doi: 10.1126/sciadv.1602411. eCollection 2017 Apr.

3.

Intertidal oysters reach their physiological limit in a future high-CO2 world.

Scanes E, Parker LM, O'Connor WA, Stapp LS, Ross PM.

J Exp Biol. 2017 Mar 1;220(Pt 5):765-774. doi: 10.1242/jeb.151365.

4.

Intra-population variability of ocean acidification impacts on the physiology of Baltic blue mussels (Mytilus edulis): integrating tissue and organism response.

Stapp LS, Thomsen J, Schade H, Bock C, Melzner F, Pörtner HO, Lannig G.

J Comp Physiol B. 2017 May;187(4):529-543. doi: 10.1007/s00360-016-1053-6. Epub 2016 Dec 5.

PMID:
27921142
5.

Differential impacts of elevated CO2 and acidosis on the energy budget of gill and liver cells from Atlantic cod, Gadus morhua.

Stapp LS, Kreiss CM, Pörtner HO, Lannig G.

Comp Biochem Physiol A Mol Integr Physiol. 2015 Sep;187:160-7. doi: 10.1016/j.cbpa.2015.05.009. Epub 2015 May 22.

PMID:
26005104

Supplemental Content

Loading ...
Support Center