Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

A Role for Chlorinated Nucleosides in the Perturbation of Macrophage Function and Promotion of Inflammation.

Macer-Wright JL, Stanley NR, Portman N, Tan JT, Bursill C, Rayner BS, Hawkins CL.

Chem Res Toxicol. 2019 Jun 17;32(6):1223-1234. doi: 10.1021/acs.chemrestox.9b00044. Epub 2019 May 16.

PMID:
31066272
2.

Ability of hypochlorous acid and N-chloramines to chlorinate DNA and its constituents.

Stanley NR, Pattison DI, Hawkins CL.

Chem Res Toxicol. 2010 Jul 19;23(7):1293-302. doi: 10.1021/tx100188b.

PMID:
20593802
3.

Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation.

Hawkins CL, Pattison DI, Stanley NR, Davies MJ.

Biochem J. 2008 Dec 15;416(3):441-52. doi: 10.1042/BJ20070941.

PMID:
18652572
5.

mRNA secondary structure modulates translation of Tat-dependent formate dehydrogenase N.

Punginelli C, Ize B, Stanley NR, Stewart V, Sawers G, Berks BC, Palmer T.

J Bacteriol. 2004 Sep;186(18):6311-5.

6.

Environmental signals and regulatory pathways that influence biofilm formation.

Stanley NR, Lazazzera BA.

Mol Microbiol. 2004 May;52(4):917-24. Review.

7.

Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis.

Hamon MA, Stanley NR, Britton RA, Grossman AD, Lazazzera BA.

Mol Microbiol. 2004 May;52(3):847-60.

8.

Role of the Escherichia coli Tat pathway in outer membrane integrity.

Ize B, Stanley NR, Buchanan G, Palmer T.

Mol Microbiol. 2003 Jun;48(5):1183-93.

9.
10.

Truncation analysis of TatA and TatB defines the minimal functional units required for protein translocation.

Lee PA, Buchanan G, Stanley NR, Berks BC, Palmer T.

J Bacteriol. 2002 Nov;184(21):5871-9.

11.

Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis.

Buchanan G, de Leeuw E, Stanley NR, Wexler M, Berks BC, Sargent F, Palmer T.

Mol Microbiol. 2002 Mar;43(6):1457-70.

12.

Behaviour of topological marker proteins targeted to the Tat protein transport pathway.

Stanley NR, Sargent F, Buchanan G, Shi J, Stewart V, Palmer T, Berks BC.

Mol Microbiol. 2002 Feb;43(4):1005-21.

13.

Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure.

Sargent F, Gohlke U, De Leeuw E, Stanley NR, Palmer T, Saibil HR, Berks BC.

Eur J Biochem. 2001 Jun;268(12):3361-7.

14.
15.
16.

A novel protein transport system involved in the biogenesis of bacterial electron transfer chains.

Berks BC, Sargent F, De Leeuw E, Hinsley AP, Stanley NR, Jack RL, Buchanan G, Palmer T.

Biochim Biophys Acta. 2000 Aug 15;1459(2-3):325-30. Review.

17.
18.

TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in sec-independent protein export.

Wexler M, Sargent F, Jack RL, Stanley NR, Bogsch EG, Robinson C, Berks BC, Palmer T.

J Biol Chem. 2000 Jun 2;275(22):16717-22.

19.

Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein.

Sargent F, Stanley NR, Berks BC, Palmer T.

J Biol Chem. 1999 Dec 17;274(51):36073-82.

20.

An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria.

Bogsch EG, Sargent F, Stanley NR, Berks BC, Robinson C, Palmer T.

J Biol Chem. 1998 Jul 17;273(29):18003-6.

21.

Overlapping functions of components of a bacterial Sec-independent protein export pathway.

Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, Berks BC, Palmer T.

EMBO J. 1998 Jul 1;17(13):3640-50.

22.

Common road blocks to national accounts pharmaceutical programs.

Stanley NR.

Med Interface. 1994 Apr;7(4):109-11, 115, 134.

PMID:
10133355

Supplemental Content

Loading ...
Support Center