Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 16

1.

Majorana fermions go for a ride.

Tewari S, Stanescu TD.

Science. 2020 Jan 3;367(6473):23-24. doi: 10.1126/science.aaz6961. No abstract available.

PMID:
31896703
2.

Ubiquitous Non-Majorana Zero-Bias Conductance Peaks in Nanowire Devices.

Chen J, Woods BD, Yu P, Hocevar M, Car D, Plissard SR, Bakkers EPAM, Stanescu TD, Frolov SM.

Phys Rev Lett. 2019 Sep 6;123(10):107703. doi: 10.1103/PhysRevLett.123.107703.

PMID:
31573319
3.

Majorana Corner Modes with Solitons in an Attractive Hubbard-Hofstadter Model of Cold Atom Optical Lattices.

Zeng C, Stanescu TD, Zhang C, Scarola VW, Tewari S.

Phys Rev Lett. 2019 Aug 9;123(6):060402. doi: 10.1103/PhysRevLett.123.060402.

PMID:
31491186
4.

Robust topological phase in proximitized core-shell nanowires coupled to multiple superconductors.

Stanescu TD, Sitek A, Manolescu A.

Beilstein J Nanotechnol. 2018 May 22;9:1512-1526. doi: 10.3762/bjnano.9.142. eCollection 2018.

5.

Experimental phase diagram of zero-bias conductance peaks in superconductor/semiconductor nanowire devices.

Chen J, Yu P, Stenger J, Hocevar M, Car D, Plissard SR, Bakkers EPAM, Stanescu TD, Frolov SM.

Sci Adv. 2017 Sep 8;3(9):e1701476. doi: 10.1126/sciadv.1701476. eCollection 2017 Sep.

6.

Phase diagram of a three-dimensional antiferromagnet with random magnetic anisotropy.

Perez FA, Borisov P, Johnson TA, Stanescu TD, Trappen R, Holcomb MB, Lederman D, Fitzsimmons MR, Aczel AA, Hong T.

Phys Rev Lett. 2015 Mar 6;114(9):097201. Epub 2015 Mar 4.

PMID:
25793845
7.

Coulomb interaction effects on the Majorana states in quantum wires.

Manolescu A, Marinescu DC, Stanescu TD.

J Phys Condens Matter. 2014 Apr 30;26(17):172203. doi: 10.1088/0953-8984/26/17/172203. Epub 2014 Apr 11.

PMID:
24722427
8.

Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment.

Stanescu TD, Tewari S.

J Phys Condens Matter. 2013 Jun 12;25(23):233201. doi: 10.1088/0953-8984/25/23/233201. Epub 2013 May 10.

PMID:
23665894
9.

To close or not to close: the fate of the superconducting gap across the topological quantum phase transition in Majorana-carrying semiconductor nanowires.

Stanescu TD, Tewari S, Sau JD, Sarma SD.

Phys Rev Lett. 2012 Dec 28;109(26):266402. Epub 2012 Dec 26.

PMID:
23368589
10.

Search for Majorana fermions in multiband semiconducting nanowires.

Lutchyn RM, Stanescu TD, Das Sarma S.

Phys Rev Lett. 2011 Mar 25;106(12):127001. Epub 2011 Mar 21.

PMID:
21517342
11.

Effective masses in a strongly anisotropic fermi liquid.

Stanescu TD, Galitski V, Drew HD.

Phys Rev Lett. 2008 Aug 8;101(6):066405. Epub 2008 Aug 8.

PMID:
18764482
12.

Nodal-antinodal dichotomy and the two gaps of a superconducting doped Mott insulator.

Civelli M, Capone M, Georges A, Haule K, Parcollet O, Stanescu TD, Kotliar G.

Phys Rev Lett. 2008 Feb 1;100(4):046402. Epub 2008 Jan 28.

PMID:
18352310
13.

Nonequilibrium spin dynamics in a trapped fermi gas with effective spin-orbit interactions.

Stanescu TD, Zhang C, Galitski V.

Phys Rev Lett. 2007 Sep 14;99(11):110403. Epub 2007 Sep 14.

PMID:
17930416
14.

Absence of asymptotic freedom in doped mott insulators: breakdown of strong coupling expansions.

Phillips P, Galanakis D, Stanescu TD.

Phys Rev Lett. 2004 Dec 31;93(26 Pt 1):267004. Epub 2004 Dec 21.

PMID:
15698010
15.

Pseudogap in doped Mott insulators is the near-neighbor analogue of the Mott gap.

Stanescu TD, Phillips P.

Phys Rev Lett. 2003 Jul 4;91(1):017002. Epub 2003 Jul 2. Erratum in: Phys Rev Lett. 2003 Jul 25;91(4):049901.

PMID:
12906566
16.

Finite-temperature density instability at high landau level occupancy

Stanescu TD, Martin I I, Phillips P.

Phys Rev Lett. 2000 Feb 7;84(6):1288-91.

PMID:
11017500

Supplemental Content

Loading ...
Support Center