Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 17

1.

Microglial Drug Targets in AD: Opportunities and Challenges in Drug Discovery and Development.

Biber K, Bhattacharya A, Campbell BM, Piro JR, Rohe M, Staal RGW, Talanian RV, Möller T.

Front Pharmacol. 2019 Aug 23;10:840. doi: 10.3389/fphar.2019.00840. eCollection 2019. Review.

2.

Senicapoc: Repurposing a Drug to Target Microglia KCa3.1 in Stroke.

Staal RGW, Weinstein JR, Nattini M, Cajina M, Chandresana G, Möller T.

Neurochem Res. 2017 Sep;42(9):2639-2645. doi: 10.1007/s11064-017-2223-y. Epub 2017 Mar 31. Review.

PMID:
28364331
3.

Inhibition of the potassium channel KCa3.1 by senicapoc reverses tactile allodynia in rats with peripheral nerve injury.

Staal RGW, Khayrullina T, Zhang H, Davis S, Fallon SM, Cajina M, Nattini ME, Hu A, Zhou H, Poda SB, Zorn S, Chandrasena G, Dale E, Cambpell B, Biilmann Rønn LC, Munro G, Mӧller T.

Eur J Pharmacol. 2017 Jan 15;795:1-7. doi: 10.1016/j.ejphar.2016.11.031. Epub 2016 Nov 19.

PMID:
27876619
4.

Critical data-based re-evaluation of minocycline as a putative specific microglia inhibitor.

Möller T, Bard F, Bhattacharya A, Biber K, Campbell B, Dale E, Eder C, Gan L, Garden GA, Hughes ZA, Pearse DD, Staal RG, Sayed FA, Wes PD, Boddeke HW.

Glia. 2016 Oct;64(10):1788-94. doi: 10.1002/glia.23007. Epub 2016 Jun 1. Review.

PMID:
27246804
5.

KCa 3.1-a microglial target ready for drug repurposing?

Dale E, Staal RG, Eder C, Möller T.

Glia. 2016 Oct;64(10):1733-41. doi: 10.1002/glia.22992. Epub 2016 Apr 28. Review.

PMID:
27121595
6.

Amperometric Detection of Dopamine Exocytosis from Synaptic Terminals.

Staal RGW, Rayport S, Sulzer D.

In: Michael AC, Borland LM, editors. Electrochemical Methods for Neuroscience. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. Chapter 16.

7.

Dopamine release at individual presynaptic terminals visualized with FFNs.

Zhang H, Gubernator NG, Yue M, Staal RG, Mosharov EV, Pereira D, Balsanek V, Vadola PA, Mukherjee B, Edwards RH, Sulzer D, Sames D.

J Vis Exp. 2009 Aug 31;(30). pii: 1562. doi: 10.3791/1562.

8.

Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals.

Gubernator NG, Zhang H, Staal RG, Mosharov EV, Pereira DB, Yue M, Balsanek V, Vadola PA, Mukherjee B, Edwards RH, Sulzer D, Sames D.

Science. 2009 Jun 12;324(5933):1441-4. doi: 10.1126/science.1172278. Epub 2009 May 7.

9.

PKC theta activity maintains normal quantal size in chromaffin cells.

Staal RG, Hananiya A, Sulzer D.

J Neurochem. 2008 Jun;105(5):1635-41. doi: 10.1111/j.1471-4159.2008.05264.x. Epub 2008 Feb 1.

10.

Alpha-synuclein overexpression increases cytosolic catecholamine concentration.

Mosharov EV, Staal RG, Bové J, Prou D, Hananiya A, Markov D, Poulsen N, Larsen KE, Moore CM, Troyer MD, Edwards RH, Przedborski S, Sulzer D.

J Neurosci. 2006 Sep 6;26(36):9304-11.

11.

Sorting of vesicular monoamine transporter 2 to the regulated secretory pathway confers the somatodendritic exocytosis of monoamines.

Li H, Waites CL, Staal RG, Dobryy Y, Park J, Sulzer DL, Edwards RH.

Neuron. 2005 Nov 23;48(4):619-33.

12.

Dopamine neurons release transmitter via a flickering fusion pore.

Staal RG, Mosharov EV, Sulzer D.

Nat Neurosci. 2004 Apr;7(4):341-6. Epub 2004 Feb 29.

PMID:
14990933
13.

Calmodulin inhibitors block quantal catecholamine release and increase acidification of neurosecretory granules in rat adrenal chromaffin cells.

Staal RG, Mosharov E, Sulzer D.

Ann N Y Acad Sci. 2002 Oct;971:269-72. No abstract available.

PMID:
12438131
14.
15.
16.
17.

Supplemental Content

Loading ...
Support Center