Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology.

Jutfelt F, Norin T, Ern R, Overgaard J, Wang T, McKenzie DJ, Lefevre S, Nilsson GE, Metcalfe NB, Hickey AJR, Brijs J, Speers-Roesch B, Roche DG, Gamperl AK, Raby GD, Morgan R, Esbaugh AJ, Gräns A, Axelsson M, Ekström A, Sandblom E, Binning SA, Hicks JW, Seebacher F, Jørgensen C, Killen SS, Schulte PM, Clark TD.

J Exp Biol. 2018 Jan 10;221(Pt 1). pii: jeb169615. doi: 10.1242/jeb.169615. No abstract available.

2.

Osmolyte Adjustments as a Pressure Adaptation in Deep-Sea Chondrichthyan Fishes: An Intraspecific Test in Arctic Skates (Amblyraja hyperborea) along a Depth Gradient.

Yancey PH, Speers-Roesch B, Atchinson S, Reist JD, Majewski AR, Treberg JR.

Physiol Biochem Zool. 2018 Mar/Apr;91(2):788-796. doi: 10.1086/696157.

PMID:
29315031
3.

Maximum thermal limits of coral reef damselfishes are size dependent and resilient to near-future ocean acidification.

Clark TD, Roche DG, Binning SA, Speers-Roesch B, Sundin J.

J Exp Biol. 2017 Oct 1;220(Pt 19):3519-3526. doi: 10.1242/jeb.162529. Epub 2017 Jul 28.

4.

Scientific Misconduct: The Elephant in the Lab. A Response to Parker et al.

Clark TD, Binning SA, Raby GD, Speers-Roesch B, Sundin J, Jutfelt F, Roche DG.

Trends Ecol Evol. 2016 Dec;31(12):899-900. doi: 10.1016/j.tree.2016.09.006. Epub 2016 Oct 1. No abstract available.

PMID:
27707511
5.

Enzymatic capacities of metabolic fuel use in cuttlefish (Sepia officinalis) and responses to food deprivation: insight into the metabolic organization and starvation survival strategy of cephalopods.

Speers-Roesch B, Callaghan NI, MacCormack TJ, Lamarre SG, Sykes AV, Driedzic WR.

J Comp Physiol B. 2016 Aug;186(6):711-25. doi: 10.1007/s00360-016-0991-3. Epub 2016 Apr 30.

PMID:
27138338
6.

Metabolic rate and rates of protein turnover in food-deprived cuttlefish, Sepia officinalis (Linnaeus 1758).

Lamarre SG, MacCormack TJ, Sykes AV, Hall JR, Speers-Roesch B, Callaghan NI, Driedzic WR.

Am J Physiol Regul Integr Comp Physiol. 2016 Jun 1;310(11):R1160-8. doi: 10.1152/ajpregu.00459.2015. Epub 2016 Apr 6.

7.

Does the physiology of chondrichthyan fishes constrain their distribution in the deep sea?

Treberg JR, Speers-Roesch B.

J Exp Biol. 2016 Mar;219(Pt 5):615-25. doi: 10.1242/jeb.128108. Review.

8.

Gut transport characteristics in herbivorous and carnivorous serrasalmid fish from ion-poor Rio Negro water.

Pelster B, Wood CM, Speers-Roesch B, Driedzic WR, Almeida-Val V, Val A.

J Comp Physiol B. 2015 Feb;185(2):225-41. doi: 10.1007/s00360-014-0879-z. Epub 2014 Dec 21.

PMID:
25528145
9.

Effects of fatty acid provision during severe hypoxia on routine and maximal performance of the in situ tilapia heart.

Speers-Roesch B, Lague SL, Farrell AP, Richards JG.

J Comp Physiol B. 2013 Aug;183(6):773-85. doi: 10.1007/s00360-013-0750-7. Epub 2013 Mar 29.

PMID:
23539326
10.

Hypoxia tolerance in sculpins is associated with high anaerobic enzyme activity in brain but not in liver or muscle.

Mandic M, Speers-Roesch B, Richards JG.

Physiol Biochem Zool. 2013 Jan-Feb;86(1):92-105. doi: 10.1086/667938. Epub 2012 Oct 30.

PMID:
23303324
11.

Exceptional cardiac anoxia tolerance in tilapia (Oreochromis hybrid).

Lague SL, Speers-Roesch B, Richards JG, Farrell AP.

J Exp Biol. 2012 Apr 15;215(Pt 8):1354-65. doi: 10.1242/jeb.063362.

12.

Hypoxia tolerance in elasmobranchs. II. Cardiovascular function and tissue metabolic responses during progressive and relative hypoxia exposures.

Speers-Roesch B, Brauner CJ, Farrell AP, Hickey AJ, Renshaw GM, Wang YS, Richards JG.

J Exp Biol. 2012 Jan 1;215(Pt 1):103-14. doi: 10.1242/jeb.059667.

13.

Hypoxia tolerance in elasmobranchs. I. Critical oxygen tension as a measure of blood oxygen transport during hypoxia exposure.

Speers-Roesch B, Richards JG, Brauner CJ, Farrell AP, Hickey AJ, Wang YS, Renshaw GM.

J Exp Biol. 2012 Jan 1;215(Pt 1):93-102. doi: 10.1242/jeb.059642.

14.

A radical approach to beating hypoxia: depressed free radical release from heart fibres of the hypoxia-tolerant epaulette shark (Hemiscyllum ocellatum).

Hickey AJ, Renshaw GM, Speers-Roesch B, Richards JG, Wang Y, Farrell AP, Brauner CJ.

J Comp Physiol B. 2012 Jan;182(1):91-100. doi: 10.1007/s00360-011-0599-6. Epub 2011 Jul 12.

PMID:
21748398
15.

Effects of environmental hypoxia on cardiac energy metabolism and performance in tilapia.

Speers-Roesch B, Sandblom E, Lau GY, Farrell AP, Richards JG.

Am J Physiol Regul Integr Comp Physiol. 2010 Jan;298(1):R104-19. doi: 10.1152/ajpregu.00418.2009. Epub 2009 Oct 28.

16.

The unusual energy metabolism of elasmobranch fishes.

Speers-Roesch B, Treberg JR.

Comp Biochem Physiol A Mol Integr Physiol. 2010 Apr;155(4):417-34. doi: 10.1016/j.cbpa.2009.09.031. Epub 2009 Oct 9. Review.

PMID:
19822221
17.

Plasma non-esterified fatty acids of elasmobranchs: comparisons of temperate and tropical species and effects of environmental salinity.

Speers-Roesch B, Ip YK, Ballantyne JS.

Comp Biochem Physiol A Mol Integr Physiol. 2008 Feb;149(2):209-16. doi: 10.1016/j.cbpa.2007.12.003. Epub 2007 Dec 8.

PMID:
18203641
18.
19.
20.
21.

The accumulation of methylamine counteracting solutes in elasmobranchs with differing levels of urea: a comparison of marine and freshwater species.

Treberg JR, Speers-Roesch B, Piermarini PM, Ip YK, Ballantyne JS, Driedzic WR.

J Exp Biol. 2006 Mar;209(Pt 5):860-70.

22.

Activities of antioxidant enzymes and cytochrome c oxidase in liver of Arctic and temperate teleosts.

Speers-Roesch B, Ballantyne JS.

Comp Biochem Physiol A Mol Integr Physiol. 2005 Apr;140(4):487-94.

PMID:
15936709

Supplemental Content

Loading ...
Support Center