Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state.

Špírek M, Mlcoušková J, Belán O, Gyimesi M, Harami GM, Molnár E, Novacek J, Kovács M, Krejci L.

Nucleic Acids Res. 2018 May 4;46(8):3967-3980. doi: 10.1093/nar/gky111.

2.

Fanconi-Anemia-Associated Mutations Destabilize RAD51 Filaments and Impair Replication Fork Protection.

Zadorozhny K, Sannino V, Beláň O, Mlčoušková J, Špírek M, Costanzo V, Krejčí L.

Cell Rep. 2017 Oct 10;21(2):333-340. doi: 10.1016/j.celrep.2017.09.062.

3.

A Polar and Nucleotide-Dependent Mechanism of Action for RAD51 Paralogs in RAD51 Filament Remodeling.

Taylor MRG, Špírek M, Jian Ma C, Carzaniga R, Takaki T, Collinson LM, Greene EC, Krejci L, Boulton SJ.

Mol Cell. 2016 Dec 1;64(5):926-939. doi: 10.1016/j.molcel.2016.10.020. Epub 2016 Nov 17.

4.

Rad51 Paralogs Remodel Pre-synaptic Rad51 Filaments to Stimulate Homologous Recombination.

Taylor MRG, Špírek M, Chaurasiya KR, Ward JD, Carzaniga R, Yu X, Egelman EH, Collinson LM, Rueda D, Krejci L, Boulton SJ.

Cell. 2015 Jul 16;162(2):271-286. doi: 10.1016/j.cell.2015.06.015.

5.

Post-zygotic sterility and cytonuclear compatibility limits in S. cerevisiae xenomitochondrial cybrids.

Špírek M, Poláková S, Jatzová K, Sulo P.

Front Genet. 2015 Jan 12;5:454. doi: 10.3389/fgene.2014.00454. eCollection 2014.

6.

Light-switchable polymer from cationic to zwitterionic form: synthesis, characterization, and interactions with DNA and bacterial cells.

Sobolčiak P, Spírek M, Katrlík J, Gemeiner P, Lacík I, Kasák P.

Macromol Rapid Commun. 2013 Apr 25;34(8):635-9. doi: 10.1002/marc.201200823. Epub 2013 Feb 12.

PMID:
23401120
7.

Homologous recombination and its regulation.

Krejci L, Altmannova V, Spirek M, Zhao X.

Nucleic Acids Res. 2012 Jul;40(13):5795-818. doi: 10.1093/nar/gks270. Epub 2012 Mar 30. Review.

8.

S. pombe genome deletion project: an update.

Spirek M, Benko Z, Carnecka M, Rumpf C, Cipak L, Batova M, Marova I, Nam M, Kim DU, Park HO, Hayles J, Hoe KL, Nurse P, Gregan J.

Cell Cycle. 2010 Jun 15;9(12):2399-402. Epub 2010 Jun 15.

9.

SUMOylation is required for normal development of linear elements and wild-type meiotic recombination in Schizosaccharomyces pombe.

Spirek M, Estreicher A, Csaszar E, Wells J, McFarlane RJ, Watts FZ, Loidl J.

Chromosoma. 2010 Feb;119(1):59-72. doi: 10.1007/s00412-009-0241-5. Epub 2009 Sep 12.

PMID:
19756689
10.

An improved strategy for tandem affinity purification-tagging of Schizosaccharomyces pombe genes.

Cipak L, Spirek M, Novatchkova M, Chen Z, Rumpf C, Lugmayr W, Mechtler K, Ammerer G, Csaszar E, Gregan J.

Proteomics. 2009 Oct;9(20):4825-8. doi: 10.1002/pmic.200800948.

11.

Sister chromatids caught in the cohesin trap.

Cipak L, Spirek M, Gregan J.

Nat Struct Mol Biol. 2008 Sep;15(9):899-900. doi: 10.1038/nsmb0908-899. No abstract available.

12.

Solving the shugoshin puzzle.

Gregan J, Spirek M, Rumpf C.

Trends Genet. 2008 May;24(5):205-7. doi: 10.1016/j.tig.2008.02.001. Epub 2008 Apr 2. Review.

13.
14.

Transfer of genetic material between pathogenic and food-borne yeasts.

Mentel M, Spírek M, Jørck-Ramberg D, Piskur J.

Appl Environ Microbiol. 2006 Jul;72(7):5122-5.

15.

A novel degron-mediated degradation of the RTG pathway regulator, Mks1p, by SCFGrr1.

Liu Z, Spírek M, Thornton J, Butow RA.

Mol Biol Cell. 2005 Oct;16(10):4893-904. Epub 2005 Aug 10.

16.

Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae.

Ferreira Júnior JR, Spírek M, Liu Z, Butow RA.

Gene. 2005 Jul 18;354:2-8.

PMID:
15967597
17.

The efficiency of functional mitochondrial replacement in Saccharomyces species has directional character.

Sulo P, Spírek M, Soltésová A, Marinoni G, Piskur J.

FEMS Yeast Res. 2003 Oct;4(1):97-104.

18.

Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p.

Liu Z, Sekito T, Spírek M, Thornton J, Butow RA.

Mol Cell. 2003 Aug;12(2):401-11.

19.

High-rate evolution of Saccharomyces sensu lato chromosomes.

Spírek M, Yang J, Groth C, Petersen RF, Langkjaer RB, Naumova ES, Sulo P, Naumov GI, Piskur J.

FEMS Yeast Res. 2003 Jun;3(4):363-73.

20.

GC clusters and the stability of mitochondrial genomes of Saccharomyces cerevisiae and related yeats.

Spírek M, Soltésová A, Horváth A, Sláviková E, Sulo P.

Folia Microbiol (Praha). 2002;47(3):263-70.

PMID:
12094735
21.

Mitochondria--tool for taxonomic identification of yeasts from Saccharomyces sensu stricto complex.

Soltésová A, Spírek M, Horváth A, Sulo P.

Folia Microbiol (Praha). 2000;45(2):99-106.

PMID:
11271832
22.

Functional co-operation between the nuclei of Saccharomyces cerevisiae and mitochondria from other yeast species.

Spírek M, Horváth A, Piskur J, Sulo P.

Curr Genet. 2000 Nov;38(4):202-7.

PMID:
11126779

Supplemental Content

Loading ...
Support Center