Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 39

1.

Editorial: Alternative Therapeutic Approaches For Multidrug Resistant Clostridium difficile.

Janvilisri T, Sorg JA, Scaria J, Sadowsky MJ.

Front Microbiol. 2019 May 31;10:1216. doi: 10.3389/fmicb.2019.01216. eCollection 2019. No abstract available.

2.

CRISPR Genome Editing Systems in the Genus Clostridium: a Timely Advancement.

McAllister KN, Sorg JA.

J Bacteriol. 2019 Jul 24;201(16). pii: e00219-19. doi: 10.1128/JB.00219-19. Print 2019 Aug 15. Review.

PMID:
31085694
3.

The requirement for co-germinants during Clostridium difficile spore germination is influenced by mutations in yabG and cspA.

Shrestha R, Cochran AM, Sorg JA.

PLoS Pathog. 2019 Apr 3;15(4):e1007681. doi: 10.1371/journal.ppat.1007681. eCollection 2019 Apr.

4.

Terbium chloride influences Clostridium difficile spore germination.

Shrestha R, Sorg JA.

Anaerobe. 2019 Aug;58:80-88. doi: 10.1016/j.anaerobe.2019.03.016. Epub 2019 Mar 26. Review.

PMID:
30926439
5.

Role of the global regulator Rex in control of NAD+ -regeneration in Clostridioides (Clostridium) difficile.

Bouillaut L, Dubois T, Francis MB, Daou N, Monot M, Sorg JA, Sonenshein AL, Dupuy B.

Mol Microbiol. 2019 Jun;111(6):1671-1688. doi: 10.1111/mmi.14245. Epub 2019 Apr 2.

PMID:
30882947
6.

Role of Bile in Infectious Disease: the Gall of 7α-Dehydroxylating Gut Bacteria.

Savidge T, Sorg JA.

Cell Chem Biol. 2019 Jan 17;26(1):1-3. doi: 10.1016/j.chembiol.2018.12.010.

7.

Conservation of the "Outside-in" Germination Pathway in Paraclostridium bifermentans.

Bhattacharjee D, Sorg JA.

Front Microbiol. 2018 Oct 17;9:2487. doi: 10.3389/fmicb.2018.02487. eCollection 2018.

8.

Clostridioides difficile Biology: Sporulation, Germination, and Corresponding Therapies for C. difficile Infection.

Zhu D, Sorg JA, Sun X.

Front Cell Infect Microbiol. 2018 Feb 8;8:29. doi: 10.3389/fcimb.2018.00029. eCollection 2018. Review.

9.

Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination.

Shrestha R, Sorg JA.

Anaerobe. 2018 Feb;49:41-47. doi: 10.1016/j.anaerobe.2017.12.001. Epub 2017 Dec 6.

10.

Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis.

McAllister KN, Bouillaut L, Kahn JN, Self WT, Sorg JA.

Sci Rep. 2017 Nov 7;7(1):14672. doi: 10.1038/s41598-017-15236-5.

11.

A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate.

Shrestha R, Lockless SW, Sorg JA.

J Biol Chem. 2017 Jun 23;292(25):10735-10742. doi: 10.1074/jbc.M117.791749. Epub 2017 May 9.

12.

Effect of tcdR Mutation on Sporulation in the Epidemic Clostridium difficile Strain R20291.

Girinathan BP, Monot M, Boyle D, McAllister KN, Sorg JA, Dupuy B, Govind R.

mSphere. 2017 Feb 15;2(1). pii: e00383-16. doi: 10.1128/mSphere.00383-16. eCollection 2017 Jan-Feb.

13.

Dipicolinic Acid Release by Germinating Clostridium difficile Spores Occurs through a Mechanosensing Mechanism.

Francis MB, Sorg JA.

mSphere. 2016 Dec 14;1(6). pii: e00306-16. eCollection 2016 Nov-Dec.

14.

Germinants and Their Receptors in Clostridia.

Bhattacharjee D, McAllister KN, Sorg JA.

J Bacteriol. 2016 Sep 22;198(20):2767-75. doi: 10.1128/JB.00405-16. Print 2016 Oct 15. Review.

15.

Detecting Cortex Fragments During Bacterial Spore Germination.

Francis MB, Sorg JA.

J Vis Exp. 2016 Jun 25;(112). doi: 10.3791/54146.

16.

Reexamining the Germination Phenotypes of Several Clostridium difficile Strains Suggests Another Role for the CspC Germinant Receptor.

Bhattacharjee D, Francis MB, Ding X, McAllister KN, Shrestha R, Sorg JA.

J Bacteriol. 2015 Dec 14;198(5):777-86. doi: 10.1128/JB.00908-15.

17.

Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination.

Fimlaid KA, Jensen O, Donnelly ML, Francis MB, Sorg JA, Shen A.

PLoS Pathog. 2015 Oct 23;11(10):e1005239. doi: 10.1371/journal.ppat.1005239. eCollection 2015 Oct.

18.

Effects of surotomycin on Clostridium difficile viability and toxin production in vitro.

Bouillaut L, McBride S, Sorg JA, Schmidt DJ, Suarez JM, Tzipori S, Mascio C, Chesnel L, Sonenshein AL.

Antimicrob Agents Chemother. 2015 Jul;59(7):4199-205. doi: 10.1128/AAC.00275-15. Epub 2015 May 4.

19.

Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination.

Francis MB, Allen CA, Sorg JA.

J Bacteriol. 2015 Jul;197(14):2276-83. doi: 10.1128/JB.02575-14. Epub 2015 Apr 27.

20.

Microbial bile acid metabolic clusters: the bouncers at the bar.

Sorg JA.

Cell Host Microbe. 2014 Nov 12;16(5):551-2. doi: 10.1016/j.chom.2014.10.015. Epub 2014 Nov 12.

21.

Clostridium difficile spore biology: sporulation, germination, and spore structural proteins.

Paredes-Sabja D, Shen A, Sorg JA.

Trends Microbiol. 2014 Jul;22(7):406-16. doi: 10.1016/j.tim.2014.04.003. Epub 2014 May 7. Review.

22.

Muricholic acids inhibit Clostridium difficile spore germination and growth.

Francis MB, Allen CA, Sorg JA.

PLoS One. 2013 Sep 9;8(9):e73653. doi: 10.1371/journal.pone.0073653. eCollection 2013.

23.

Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection.

Francis MB, Allen CA, Shrestha R, Sorg JA.

PLoS Pathog. 2013 May;9(5):e1003356. doi: 10.1371/journal.ppat.1003356. Epub 2013 May 9.

24.

Site-directed mutations in the lanthipeptide mutacin 1140.

Chen S, Wilson-Stanford S, Cromwell W, Hillman JD, Guerrero A, Allen CA, Sorg JA, Smith L.

Appl Environ Microbiol. 2013 Jul;79(13):4015-23. doi: 10.1128/AEM.00704-13. Epub 2013 Apr 19.

25.

Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria.

Richter SG, Elli D, Kim HK, Hendrickx AP, Sorg JA, Schneewind O, Missiakas D.

Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3531-6. doi: 10.1073/pnas.1217337110. Epub 2013 Feb 11.

26.

Both fidaxomicin and vancomycin inhibit outgrowth of Clostridium difficile spores.

Allen CA, Babakhani F, Sears P, Nguyen L, Sorg JA.

Antimicrob Agents Chemother. 2013 Jan;57(1):664-7. doi: 10.1128/AAC.01611-12. Epub 2012 Nov 12.

27.

Genetic manipulation of Clostridium difficile.

Bouillaut L, McBride SM, Sorg JA.

Curr Protoc Microbiol. 2011 Feb;Chapter 9:Unit 9A.2. doi: 10.1002/9780471729259.mc09a02s20.

28.

Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid.

Sorg JA, Sonenshein AL.

J Bacteriol. 2010 Oct;192(19):4983-90. doi: 10.1128/JB.00610-10. Epub 2010 Jul 30.

29.

Metabolism of bile salts in mice influences spore germination in Clostridium difficile.

Giel JL, Sorg JA, Sonenshein AL, Zhu J.

PLoS One. 2010 Jan 15;5(1):e8740. doi: 10.1371/journal.pone.0008740.

30.

Laboratory maintenance of Clostridium difficile.

Sorg JA, Dineen SS.

Curr Protoc Microbiol. 2009 Feb;Chapter 9:Unit9A.1. doi: 10.1002/9780471729259.mc09a01s12.

PMID:
19235151
31.

Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination.

Sorg JA, Sonenshein AL.

J Bacteriol. 2009 Feb;191(3):1115-7. doi: 10.1128/JB.01260-08. Epub 2008 Dec 5.

32.

Yersinia enterocolitica type III secretion of YopR requires a structure in its mRNA.

Blaylock B, Sorg JA, Schneewind O.

Mol Microbiol. 2008 Dec;70(5):1210-22. doi: 10.1111/j.1365-2958.2008.06474.x. Epub 2008 Oct 2.

33.

Impassable YscP substrates and their impact on the Yersinia enterocolitica type III secretion pathway.

Riordan KE, Sorg JA, Berube BJ, Schneewind O.

J Bacteriol. 2008 Sep;190(18):6204-16. doi: 10.1128/JB.00467-08. Epub 2008 Jul 18.

34.

Bile salts and glycine as cogerminants for Clostridium difficile spores.

Sorg JA, Sonenshein AL.

J Bacteriol. 2008 Apr;190(7):2505-12. doi: 10.1128/JB.01765-07. Epub 2008 Feb 1.

35.

Secretion signal recognition by YscN, the Yersinia type III secretion ATPase.

Sorg JA, Blaylock B, Schneewind O.

Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16490-5. Epub 2006 Oct 18.

36.

Rejection of impassable substrates by Yersinia type III secretion machines.

Sorg JA, Miller NC, Marketon MM, Schneewind O.

J Bacteriol. 2005 Oct;187(20):7090-102.

37.

Substrate recognition of type III secretion machines--testing the RNA signal hypothesis.

Sorg JA, Miller NC, Schneewind O.

Cell Microbiol. 2005 Sep;7(9):1217-25. Review.

PMID:
16098210
38.

The secretion signal of YopN, a regulatory protein of the Yersinia enterocolitica type III secretion pathway.

Goss JW, Sorg JA, Ramamurthi KS, Ton-That H, Schneewind O.

J Bacteriol. 2004 Sep;186(18):6320-4.

39.

Supplemental Content

Support Center