Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 37

1.

Rod photoreceptors signal fast changes in daylight levels using a Cx36-independent retinal pathway in mouse.

Pasquale R, Umino Y, Solessio E.

J Neurosci. 2019 Nov 27. pii: 0455-19. doi: 10.1523/JNEUROSCI.0455-19.2019. [Epub ahead of print]

PMID:
31776212
2.

Rod Photoresponse Kinetics Limit Temporal Contrast Sensitivity in Mesopic Vision.

Umino Y, Guo Y, Chen CK, Pasquale R, Solessio E.

J Neurosci. 2019 Apr 17;39(16):3041-3056. doi: 10.1523/JNEUROSCI.1404-18.2019. Epub 2019 Feb 8.

3.

Visual Temporal Contrast Sensitivity in the Behaving Mouse Shares Fundamental Properties with Human Psychophysics.

Umino Y, Pasquale R, Solessio E.

eNeuro. 2018 Aug 29;5(4). pii: ENEURO.0181-18.2018. doi: 10.1523/ENEURO.0181-18.2018. eCollection 2018 Jul-Aug.

4.

Contrast sensitivity to spatial gratings in moderate and dim light conditions in patients with diabetes in the absence of diabetic retinopathy.

Safi S, Rahimi A, Raeesi A, Safi H, Aghazadeh Amiri M, Malek M, Yaseri M, Haeri M, Middleton FA, Solessio E, Ahmadieh H.

BMJ Open Diabetes Res Care. 2017 Aug 8;5(1):e000408. doi: 10.1136/bmjdrc-2017-000408. eCollection 2017.

5.

Corrigendum to 'A system to measure the pupil response to steady lights in freely behaving mice' [J. Neurosci. Methods 273 (2016) 74-85].

Bushnell M, Umino Y, Solessio E.

J Neurosci Methods. 2018 Apr 1;299:64. doi: 10.1016/j.jneumeth.2017.08.011. Epub 2017 Aug 19. No abstract available.

PMID:
28830641
6.

A system to measure the pupil response to steady lights in freely behaving mice.

Bushnell M, Umino Y, Solessio E.

J Neurosci Methods. 2016 Nov 1;273:74-85. doi: 10.1016/j.jneumeth.2016.08.001. Epub 2016 Aug 3. Erratum in: J Neurosci Methods. 2018 Apr 1;299:64.

7.

Ablation of the proapoptotic genes CHOP or Ask1 does not prevent or delay loss of visual function in a P23H transgenic mouse model of retinitis pigmentosa.

Adekeye A, Haeri M, Solessio E, Knox BE.

PLoS One. 2014 Feb 11;9(2):e83871. doi: 10.1371/journal.pone.0083871. eCollection 2014.

8.

An inducible expression system to measure rhodopsin transport in transgenic Xenopus rod outer segments.

Zhuo X, Haeri M, Solessio E, Knox BE.

PLoS One. 2013 Dec 6;8(12):e82629. doi: 10.1371/journal.pone.0082629. eCollection 2013.

9.

Regulation of rhodopsin-eGFP distribution in transgenic xenopus rod outer segments by light.

Haeri M, Calvert PD, Solessio E, Pugh EN Jr, Knox BE.

PLoS One. 2013 Nov 15;8(11):e80059. doi: 10.1371/journal.pone.0080059. eCollection 2013.

10.

Onecut1 is essential for horizontal cell genesis and retinal integrity.

Wu F, Li R, Umino Y, Kaczynski TJ, Sapkota D, Li S, Xiang M, Fliesler SJ, Sherry DM, Gannon M, Solessio E, Mu X.

J Neurosci. 2013 Aug 7;33(32):13053-65, 13065a. doi: 10.1523/JNEUROSCI.0116-13.2013.

11.

Loss of scotopic contrast sensitivity in the optomotor response of diabetic mice.

Umino Y, Solessio E.

Invest Ophthalmol Vis Sci. 2013 Feb 28;54(2):1536-43. doi: 10.1167/iovs.12-10825.

PMID:
23287790
12.

The relationship between slow photoresponse recovery rate and temporal resolution of vision.

Umino Y, Herrmann R, Chen CK, Barlow RB, Arshavsky VY, Solessio E.

J Neurosci. 2012 Oct 10;32(41):14364-73. doi: 10.1523/JNEUROSCI.1296-12.2012.

13.

Partial rescue of retinal function in chronically hypoglycemic mice.

Umino Y, Cuenca N, Everhart D, Fernandez-Sanchez L, Barlow RB, Solessio E.

Invest Ophthalmol Vis Sci. 2012 Feb 21;53(2):915-23. doi: 10.1167/iovs.11-8787. Print 2012 Feb.

14.

Cone degeneration following rod ablation in a reversible model of retinal degeneration.

Choi RY, Engbretson GA, Solessio EC, Jones GA, Coughlin A, Aleksic I, Zuber ME.

Invest Ophthalmol Vis Sci. 2011 Jan 21;52(1):364-73. doi: 10.1167/iovs.10-5347. Print 2011 Jan.

15.

Generation of functional eyes from pluripotent cells.

Viczian AS, Solessio EC, Lyou Y, Zuber ME.

PLoS Biol. 2009 Aug;7(8):e1000174. doi: 10.1371/journal.pbio.1000174. Epub 2009 Aug 18.

16.

Light responses in rods of vitamin A-deprived Xenopus.

Solessio E, Umino Y, Cameron DA, Loew E, Engbretson GA, Knox BE, Barlow RB.

Invest Ophthalmol Vis Sci. 2009 Sep;50(9):4477-86. doi: 10.1167/iovs.08-3186. Epub 2009 Apr 30.

17.

Speed, spatial, and temporal tuning of rod and cone vision in mouse.

Umino Y, Solessio E, Barlow RB.

J Neurosci. 2008 Jan 2;28(1):189-98. doi: 10.1523/JNEUROSCI.3551-07.2008.

18.

Hypoglycemia leads to age-related loss of vision.

Umino Y, Everhart D, Solessio E, Cusato K, Pan JC, Nguyen TH, Brown ET, Hafler R, Frio BA, Knox BE, Engbretson GA, Haeri M, Cui L, Glenn AS, Charron MJ, Barlow RB.

Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19541-5. Epub 2006 Dec 11.

19.

Shedding light on cones.

Knox BE, Solessio E.

J Gen Physiol. 2006 Apr;127(4):355-8. Review. No abstract available.

20.

Anesthesia can cause sustained hyperglycemia in C57/BL6J mice.

Brown ET, Umino Y, Loi T, Solessio E, Barlow R.

Vis Neurosci. 2005 Sep-Oct;22(5):615-8.

PMID:
16332272
21.

Developmental regulation of calcium-dependent feedback in Xenopus rods.

Solessio E, Mani SS, Cuenca N, Engbretson GA, Barlow RB, Knox BE.

J Gen Physiol. 2004 Nov;124(5):569-85.

22.

Circadian modulation of temporal properties of the rod pathway in larval Xenopus.

Solessio E, Scheraga D, Engbretson GA, Knox BE, Barlow RB.

J Neurophysiol. 2004 Nov;92(5):2672-84.

23.

Spatial distribution and specification of mammalian replication origins during G1 phase.

Li F, Chen J, Solessio E, Gilbert DM.

J Cell Biol. 2003 Apr 28;161(2):257-66. Epub 2003 Apr 21.

24.

Calcium-induced calcium release and calcium buffering in retinal horizontal cells.

Solessio E, Lasater EM.

Vis Neurosci. 2002 Nov-Dec;19(6):713-25.

PMID:
12688667
25.

Ionic mechanisms mediating oscillatory membrane potentials in wide-field retinal amacrine cells.

Vigh J, Solessio E, Morgans CW, Lasater EM.

J Neurophysiol. 2003 Jul;90(1):431-43. Epub 2003 Mar 20.

26.
27.

Membrane properties of an unusual intrinsically oscillating, wide-field teleost retinal amacrine cell.

Solessio E, Vigh J, Cuenca N, Rapp K, Lasater EM.

J Physiol. 2002 Nov 1;544(3):831-47.

28.

Potassium conductances and the glutamate transporter in Müller cells of the turtle retina and their role in potassium siphoning.

Perlman I, Solessio E, Lasater EM.

Prog Brain Res. 2001;131:451-63. Review. No abstract available.

PMID:
11420962
29.

Spermine mediates inward rectification in potassium channels of turtle retinal Müller cells.

Solessio E, Rapp K, Perlman I, Lasater EM.

J Neurophysiol. 2001 Apr;85(4):1357-67.

30.

Characterization with barium of potassium currents in turtle retinal Müller cells.

Solessio E, Linn DM, Perlman I, Lasater EM.

J Neurophysiol. 2000 Jan;83(1):418-30.

31.

Electroretinogram of the parietal eye of lizards: photoreceptor, glial, and lens cell contributions.

Solessio E, Engbretson GA.

Vis Neurosci. 1999 Sep-Oct;16(5):895-907.

PMID:
10580725
32.
33.

Synoretin--A new protein belonging to the synuclein family.

Surguchov A, Surgucheva I, Solessio E, Baehr W.

Mol Cell Neurosci. 1999 Feb;13(2):95-103.

PMID:
10192768
34.

The role of potassium conductance in the generation of light responses in Müller cells of the turtle retina.

Linn DM, Solessio E, Perlman I, Lasater EM.

Vis Neurosci. 1998 May-Jun;15(3):449-58.

PMID:
9685198
35.
36.

A cGMP-gated cation channel in depolarizing photoreceptors of the lizard parietal eye.

Finn JT, Solessio EC, Yau KW.

Nature. 1997 Feb 27;385(6619):815-9.

PMID:
9039913
37.

Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards.

Solessio E, Engbretson GA.

Nature. 1993 Jul 29;364(6436):442-5.

PMID:
8332214

Supplemental Content

Loading ...
Support Center