Format

Send to

Choose Destination
EMBO J. 2017 May 2;36(9):1279-1297. doi: 10.15252/embj.201694571. Epub 2017 Mar 20.

The retinoblastoma homolog RBR1 mediates localization of the repair protein RAD51 to DNA lesions in Arabidopsis.

Author information

1
Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France.
2
Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany.
3
RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan.
4
Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197-INSERM U 1024, Paris, France.
5
Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France arp.schnittger@uni-hamburg.de.

Abstract

The retinoblastoma protein (Rb), which typically functions as a transcriptional repressor of E2F-regulated genes, represents a major control hub of the cell cycle. Here, we show that loss of the Arabidopsis Rb homolog RETINOBLASTOMA-RELATED 1 (RBR1) leads to cell death, especially upon exposure to genotoxic drugs such as the environmental toxin aluminum. While cell death can be suppressed by reduced cell-proliferation rates, rbr1 mutant cells exhibit elevated levels of DNA lesions, indicating a direct role of RBR1 in the DNA-damage response (DDR). Consistent with its role as a transcriptional repressor, we find that RBR1 directly binds to and represses key DDR genes such as RADIATION SENSITIVE 51 (RAD51), leaving it unclear why rbr1 mutants are hypersensitive to DNA damage. However, we find that RBR1 is also required for RAD51 localization to DNA lesions. We further show that RBR1 is itself targeted to DNA break sites in a CDKB1 activity-dependent manner and partially co-localizes with RAD51 at damage sites. Taken together, these results implicate RBR1 in the assembly of DNA-bound repair complexes, in addition to its canonical function as a transcriptional regulator.

KEYWORDS:

Arabidopsis ; DNA‐damage response; RAD51; retinoblastoma

PMID:
28320735
PMCID:
PMC5412766
DOI:
10.15252/embj.201694571
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center