Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 66

1.

The decision to move: response times, neuronal circuits and sensory memory in a simple vertebrate.

Roberts A, Borisyuk R, Buhl E, Ferrario A, Koutsikou S, Li WC, Soffe SR.

Proc Biol Sci. 2019 Mar 27;286(1899):20190297. doi: 10.1098/rspb.2019.0297. Review.

2.

Stimulation of Single, Possible CHX10 Hindbrain Neurons Turns Swimming On and Off in Young Xenopus Tadpoles.

Li WC, Soffe SR.

Front Cell Neurosci. 2019 Feb 18;13:47. doi: 10.3389/fncel.2019.00047. eCollection 2019.

3.

A simple decision to move in response to touch reveals basic sensory memory and mechanisms for variable response times.

Koutsikou S, Merrison-Hort R, Buhl E, Ferrario A, Li WC, Borisyuk R, Soffe SR, Roberts A.

J Physiol. 2018 Dec;596(24):6219-6233. doi: 10.1113/JP276356. Epub 2018 Sep 19.

4.

Bifurcations of Limit Cycles in a Reduced Model of the Xenopus Tadpole Central Pattern Generator.

Ferrario A, Merrison-Hort R, Soffe SR, Li WC, Borisyuk R.

J Math Neurosci. 2018 Jul 18;8(1):10. doi: 10.1186/s13408-018-0065-9.

5.

Structural and functional properties of a probabilistic model of neuronal connectivity in a simple locomotor network.

Ferrario A, Merrison-Hort R, Soffe SR, Borisyuk R.

Elife. 2018 Mar 28;7. pii: e33281. doi: 10.7554/eLife.33281.

6.

Studying the role of axon fasciculation during development in a computational model of the Xenopus tadpole spinal cord.

Davis O, Merrison-Hort R, Soffe SR, Borisyuk R.

Sci Rep. 2017 Oct 19;7(1):13551. doi: 10.1038/s41598-017-13804-3.

7.

To swim or not to swim: A population-level model of Xenopus tadpole decision making and locomotor behaviour.

Borisyuk R, Merrison-Hort R, Soffe SR, Koutsikou S, Li WC.

Biosystems. 2017 Nov;161:3-14. doi: 10.1016/j.biosystems.2017.07.004. Epub 2017 Jul 15.

8.

Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity.

Hull MJ, Soffe SR, Willshaw DJ, Roberts A.

PLoS Comput Biol. 2016 Jan 29;12(1):e1004702. doi: 10.1371/journal.pcbi.1004702. eCollection 2016 Jan.

9.

Sensory initiation of a co-ordinated motor response: synaptic excitation underlying simple decision-making.

Buhl E, Soffe SR, Roberts A.

J Physiol. 2015 Oct 1;593(19):4423-37. doi: 10.1113/JP270792. Epub 2015 Jul 30.

10.

Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity.

Hull MJ, Soffe SR, Willshaw DJ, Roberts A.

PLoS Comput Biol. 2015 May 8;11(5):e1004240. doi: 10.1371/journal.pcbi.1004240. eCollection 2015 May.

11.

A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model.

Borisyuk R, Al Azad AK, Conte D, Roberts A, Soffe SR.

PLoS One. 2014 Feb 21;9(2):e89461. doi: 10.1371/journal.pone.0089461. eCollection 2014.

12.

Can simple rules control development of a pioneer vertebrate neuronal network generating behavior?

Roberts A, Conte D, Hull M, Merrison-Hort R, al Azad AK, Buhl E, Borisyuk R, Soffe SR.

J Neurosci. 2014 Jan 8;34(2):608-21. doi: 10.1523/JNEUROSCI.3248-13.2014.

13.

The role of a trigeminal sensory nucleus in the initiation of locomotion.

Buhl E, Roberts A, Soffe SR.

J Physiol. 2012 May 15;590(10):2453-69. doi: 10.1113/jphysiol.2012.227934. Epub 2012 Mar 5.

14.

Modeling the connectome of a simple spinal cord.

Borisyuk R, Al Azad AK, Conte D, Roberts A, Soffe SR.

Front Neuroinform. 2011 Sep 23;5:20. doi: 10.3389/fninf.2011.00020. eCollection 2011.

15.

Skin impulse excitation of spinal sensory neurons in developing Xenopus laevis (Daudin) tadpoles.

James LJ, Soffe SR.

J Exp Biol. 2011 Oct 15;214(Pt 20):3341-50. doi: 10.1242/jeb.058446.

16.

A functional scaffold of CNS neurons for the vertebrates: the developing Xenopus laevis spinal cord.

Roberts A, Li WC, Soffe SR.

Dev Neurobiol. 2012 Apr;72(4):575-84. doi: 10.1002/dneu.20889. Review.

17.

Specific brainstem neurons switch each other into pacemaker mode to drive movement by activating NMDA receptors.

Li WC, Roberts A, Soffe SR.

J Neurosci. 2010 Dec 8;30(49):16609-20. doi: 10.1523/JNEUROSCI.3695-10.2010.

18.

How neurons generate behavior in a hatchling amphibian tadpole: an outline.

Roberts A, Li WC, Soffe SR.

Front Behav Neurosci. 2010 Jun 24;4:16. doi: 10.3389/fnbeh.2010.00016. eCollection 2010.

19.

Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles.

Berkowitz A, Roberts A, Soffe SR.

Front Behav Neurosci. 2010 Jun 28;4:36. doi: 10.3389/fnbeh.2010.00036. eCollection 2010.

20.

Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control.

Soffe SR, Roberts A, Li WC.

J Physiol. 2009 Oct 15;587(Pt 20):4829-44. doi: 10.1113/jphysiol.2009.175208. Epub 2009 Aug 24.

21.
22.

Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles.

Li WC, Roberts A, Soffe SR.

J Physiol. 2009 Apr 15;587(Pt 8):1677-93. doi: 10.1113/jphysiol.2008.166942. Epub 2009 Feb 16.

23.

Roles for inhibition: studies on networks controlling swimming in young frog tadpoles.

Roberts A, Li WC, Soffe SR.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Feb;194(2):185-93. doi: 10.1007/s00359-007-0273-3. Epub 2008 Jan 29. Review.

PMID:
18228081
24.
25.

Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network.

Li WC, Cooke T, Sautois B, Soffe SR, Borisyuk R, Roberts A.

Neural Dev. 2007 Sep 10;2:17.

26.

Origin of excitatory drive to a spinal locomotor network.

Roberts A, Li WC, Soffe SR, Wolf E.

Brain Res Rev. 2008 Jan;57(1):22-8. Epub 2007 Jul 27. Review.

PMID:
17825424
27.

Role of type-specific neuron properties in a spinal cord motor network.

Sautois B, Soffe SR, Li WC, Roberts A.

J Comput Neurosci. 2007 Aug;23(1):59-77. Epub 2007 Jan 20.

PMID:
17237908
28.

Persistent responses to brief stimuli: feedback excitation among brainstem neurons.

Li WC, Soffe SR, Wolf E, Roberts A.

J Neurosci. 2006 Apr 12;26(15):4026-35.

29.

Glutamate and acetylcholine corelease at developing synapses.

Li WC, Soffe SR, Roberts A.

Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15488-93. Epub 2004 Oct 19.

30.

Primitive roles for inhibitory interneurons in developing frog spinal cord.

Li WC, Higashijima S, Parry DM, Roberts A, Soffe SR.

J Neurosci. 2004 Jun 23;24(25):5840-8.

31.

Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway.

Li WC, Soffe SR, Roberts A.

J Neurophysiol. 2004 Aug;92(2):895-904. Epub 2004 Mar 17.

32.
33.

Brainstem control of activity and responsiveness in resting frog tadpoles: tonic inhibition.

Lambert TD, Li WC, Soffe SR, Roberts A.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 Apr;190(4):331-42. Epub 2004 Feb 27.

PMID:
14991305
34.
35.
36.
37.

Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles.

Li WC, Perrins R, Soffe SR, Yoshida M, Walford A, Roberts A.

J Comp Neurol. 2001 Dec 17;441(3):248-65.

PMID:
11745648
38.
39.

Motoneurons of the axial swimming muscles in hatchling Xenopus tadpoles: features, distribution, and central synapses.

Roberts A, Walford A, Soffe SR, Yoshida M.

J Comp Neurol. 1999 Aug 30;411(3):472-86.

PMID:
10413780
40.

Influence of glycinergic inhibition on spinal neuron excitability during amphibian tadpole locomotion.

Perrins R, Soffe SR.

Ann N Y Acad Sci. 1998 Nov 16;860:472-4. No abstract available.

PMID:
9928343
41.

Central circuits controlling locomotion in young frog tadpoles.

Roberts A, Soffe SR, Wolf ES, Yoshida M, Zhao FY.

Ann N Y Acad Sci. 1998 Nov 16;860:19-34. Review.

PMID:
9928299
43.
44.
45.

Composition of the excitatory drive during swimming in two amphibian embryos: Rana and Bufo.

Perrins R, Soffe SR.

J Comp Physiol A. 1996 Oct;179(4):563-73.

PMID:
8828181
46.
48.

Transitions between two different motor patterns in Xenopus embryos.

Green CS, Soffe SR.

J Comp Physiol A. 1996 Feb;178(2):279-91.

PMID:
8592307
50.

Neuronal control of swimming locomotion: analysis of the pteropod mollusc Clione and embryos of the amphibian Xenopus.

Arshavsky YuI, Orlovsky GN, Panchin YuV, Roberts A, Soffe SR.

Trends Neurosci. 1993 Jun;16(6):227-33. Review.

PMID:
7688164

Supplemental Content

Loading ...
Support Center