Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 201

1.

FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes.

Okuda-Shimazaki J, Yoshida H, Sode K.

Bioelectrochemistry. 2019 Nov 20;132:107414. doi: 10.1016/j.bioelechem.2019.107414. [Epub ahead of print] Review.

2.

X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein.

Yoshida H, Kojima K, Shiota M, Yoshimatsu K, Yamazaki T, Ferri S, Tsugawa W, Kamitori S, Sode K.

Acta Crystallogr D Struct Biol. 2019 Sep 1;75(Pt 9):841-851. doi: 10.1107/S2059798319010878. Epub 2019 Aug 28.

3.

G-Quadruplex Structure Improves the Immunostimulatory Effects of CpG Oligonucleotides.

Hoshi K, Yamazaki T, Sugiyama Y, Tsukakoshi K, Tsugawa W, Sode K, Ikebukuro K.

Nucleic Acid Ther. 2019 Aug;29(4):224-229. doi: 10.1089/nat.2018.0761. Epub 2019 Mar 5.

PMID:
30835633
4.

Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase.

Ito Y, Okuda-Shimazaki J, Tsugawa W, Loew N, Shitanda I, Lin CE, La Belle J, Sode K.

Biosens Bioelectron. 2019 Mar 15;129:189-197. doi: 10.1016/j.bios.2019.01.018. Epub 2019 Jan 16.

PMID:
30721794
5.

Convenient and Universal Fabrication Method for Antibody-Enzyme Complexes as Sensing Elements Using the SpyCatcher/SpyTag System.

Kimura H, Asano R, Tsukamoto N, Tsugawa W, Sode K.

Anal Chem. 2018 Dec 18;90(24):14500-14506. doi: 10.1021/acs.analchem.8b04344. Epub 2018 Nov 27.

PMID:
30427170
6.

Development of a third-generation glucose sensor based on the open circuit potential for continuous glucose monitoring.

Lee I, Loew N, Tsugawa W, Ikebukuro K, Sode K.

Biosens Bioelectron. 2019 Jan 15;124-125:216-223. doi: 10.1016/j.bios.2018.09.099. Epub 2018 Oct 9.

PMID:
30388564
7.

Affinity sensor for haemoglobin A1c based on single-walled carbon nanotube field-effect transistor and fructosyl amino acid binding protein.

Hatada M, Tran TT, Tsugawa W, Sode K, Mulchandani A.

Biosens Bioelectron. 2019 Mar 15;129:254-259. doi: 10.1016/j.bios.2018.09.069. Epub 2018 Sep 20.

PMID:
30297174
8.

Synthesis of a hemin-containing copolymer as a novel immunostimulator that induces IFN-gamma production.

Hoshi K, Yamazaki T, Yoshikawa C, Tsugawa W, Ikebukuro K, Sode K.

Int J Nanomedicine. 2018 Aug 2;13:4461-4472. doi: 10.2147/IJN.S166259. eCollection 2018.

9.

Esterification of PQQ Enhances Blood-Brain Barrier Permeability and Inhibitory Activity against Amyloidogenic Protein Fibril Formation.

Tsukakoshi K, Yoshida W, Kobayashi M, Kobayashi N, Kim J, Kaku T, Iguchi T, Nagasawa K, Asano R, Ikebukuro K, Sode K.

ACS Chem Neurosci. 2018 Dec 19;9(12):2898-2903. doi: 10.1021/acschemneuro.8b00355. Epub 2018 Aug 8.

PMID:
30074759
10.

Designer fungus FAD glucose dehydrogenase capable of direct electron transfer.

Ito K, Okuda-Shimazaki J, Mori K, Kojima K, Tsugawa W, Ikebukuro K, Lin CE, La Belle J, Yoshida H, Sode K.

Biosens Bioelectron. 2019 Jan 1;123:114-123. doi: 10.1016/j.bios.2018.07.027. Epub 2018 Jul 26.

PMID:
30057265
11.

Comprehensive study of domain rearrangements of single-chain bispecific antibodies to determine the best combination of configurations and microbial host cells.

Asano R, Kuroki Y, Honma S, Akabane M, Watanabe S, Mayuzumi S, Hiyamuta S, Kumagai I, Sode K.

MAbs. 2018 Aug/Sep;10(6):854-863. doi: 10.1080/19420862.2018.1476815. Epub 2018 Jul 9.

12.

Engineered fungus derived FAD-dependent glucose dehydrogenase with acquired ability to utilize hexaammineruthenium(III) as an electron acceptor.

Okurita M, Suzuki N, Loew N, Yoshida H, Tsugawa W, Mori K, Kojima K, Klonoff DC, Sode K.

Bioelectrochemistry. 2018 Oct;123:62-69. doi: 10.1016/j.bioelechem.2018.04.007. Epub 2018 Apr 10.

PMID:
29727765
13.

A Disposable Tear Glucose Biosensor-Part 5: Improvements in Reagents and Tear Sampling Component.

Lin CE, Ito Y, Deng A, Johns J, Matloff D, Cook CB, Sode K, La Belle JT.

J Diabetes Sci Technol. 2018 Jul;12(4):842-846. doi: 10.1177/1932296818769944. Epub 2018 Apr 18.

14.

Elucidation of the intra- and inter-molecular electron transfer pathways of glucoside 3-dehydrogenase.

Miyazaki R, Yamazaki T, Yoshimatsu K, Kojima K, Asano R, Sode K, Tsugawa W.

Bioelectrochemistry. 2018 Aug;122:115-122. doi: 10.1016/j.bioelechem.2018.03.001. Epub 2018 Mar 7.

PMID:
29625423
15.

Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase.

Yamashita Y, Suzuki N, Hirose N, Kojima K, Tsugawa W, Sode K.

Int J Mol Sci. 2018 Mar 21;19(4). pii: E931. doi: 10.3390/ijms19040931.

16.

Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference.

Hatada M, Loew N, Inose-Takahashi Y, Okuda-Shimazaki J, Tsugawa W, Mulchandani A, Sode K.

Bioelectrochemistry. 2018 Jun;121:185-190. doi: 10.1016/j.bioelechem.2018.02.001. Epub 2018 Feb 9.

PMID:
29471242
17.

Glycogen Production in Marine Cyanobacterial Strain Synechococcus sp. NKBG 15041c.

Badary A, Takamatsu S, Nakajima M, Ferri S, Lindblad P, Sode K.

Mar Biotechnol (NY). 2018 Apr;20(2):109-117. doi: 10.1007/s10126-017-9792-2. Epub 2018 Jan 12.

PMID:
29330710
18.

Improving the induction fold of riboregulators for cyanobacteria.

Sakamoto I, Abe K, Kawai S, Tsukakoshi K, Sakai Y, Sode K, Ikebukuro K.

RNA Biol. 2018 Mar 4;15(3):353-358. doi: 10.1080/15476286.2017.1422470. Epub 2018 Feb 1.

19.

The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers.

Lee I, Loew N, Tsugawa W, Lin CE, Probst D, La Belle JT, Sode K.

Bioelectrochemistry. 2018 Jun;121:1-6. doi: 10.1016/j.bioelechem.2017.12.008. Epub 2017 Dec 20.

PMID:
29291433
20.

Minimizing the effects of oxygen interference on l-lactate sensors by a single amino acid mutation in Aerococcus viridansl-lactate oxidase.

Hiraka K, Kojima K, Lin CE, Tsugawa W, Asano R, La Belle JT, Sode K.

Biosens Bioelectron. 2018 Apr 30;103:163-170. doi: 10.1016/j.bios.2017.12.018. Epub 2017 Dec 14.

PMID:
29279290
21.

Mediator Preference of Two Different FAD-Dependent Glucose Dehydrogenases Employed in Disposable Enzyme Glucose Sensors.

Loew N, Tsugawa W, Nagae D, Kojima K, Sode K.

Sensors (Basel). 2017 Nov 16;17(11). pii: E2636. doi: 10.3390/s17112636.

22.

Applying a riboregulator as a new chromosomal gene regulation tool for higher glycogen production in Synechocystis sp. PCC 6803.

Ueno K, Sakai Y, Shono C, Sakamoto I, Tsukakoshi K, Hihara Y, Sode K, Ikebukuro K.

Appl Microbiol Biotechnol. 2017 Dec;101(23-24):8465-8474. doi: 10.1007/s00253-017-8570-4. Epub 2017 Oct 16.

PMID:
29038975
23.

X-ray structures of fructosyl peptide oxidases revealing residues responsible for gating oxygen access in the oxidative half reaction.

Shimasaki T, Yoshida H, Kamitori S, Sode K.

Sci Rep. 2017 Jun 5;7(1):2790. doi: 10.1038/s41598-017-02657-5.

24.

Construction of a Miniaturized Chromatic Acclimation Sensor from Cyanobacteria with Reversed Response to a Light Signal.

Nakajima M, Ferri S, Rögner M, Sode K.

Sci Rep. 2016 Nov 24;6:37595. doi: 10.1038/srep37595.

25.

Structural regulation by a G-quadruplex ligand increases binding abilities of G-quadruplex-forming aptamers.

Tsukakoshi K, Ikuta Y, Abe K, Yoshida W, Iida K, Ma Y, Nagasawa K, Sode K, Ikebukuro K.

Chem Commun (Camb). 2016 Oct 18;52(85):12646-12649.

PMID:
27713935
26.

Continuous operation of an ultra-low-power microcontroller using glucose as the sole energy source.

Lee I, Sode T, Loew N, Tsugawa W, Lowe CR, Sode K.

Biosens Bioelectron. 2017 Jul 15;93:335-339. doi: 10.1016/j.bios.2016.09.095. Epub 2016 Sep 28.

PMID:
27743864
27.

Development of an electrochemical detection system for measuring DNA methylation levels using methyl CpG-binding protein and glucose dehydrogenase-fused zinc finger protein.

Lee J, Yoshida W, Abe K, Nakabayashi K, Wakeda H, Hata K, Marquette CA, Blum LJ, Sode K, Ikebukuro K.

Biosens Bioelectron. 2017 Jul 15;93:118-123. doi: 10.1016/j.bios.2016.09.060. Epub 2016 Sep 17.

PMID:
27666367
28.

Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips.

Sode K, Loew N, Ohnishi Y, Tsuruta H, Mori K, Kojima K, Tsugawa W, LaBelle JT, Klonoff DC.

Biosens Bioelectron. 2017 Jan 15;87:305-311. doi: 10.1016/j.bios.2016.08.053. Epub 2016 Aug 18.

PMID:
27573296
29.

Development of a screen-printed carbon electrode based disposable enzyme sensor strip for the measurement of glycated albumin.

Hatada M, Tsugawa W, Kamio E, Loew N, Klonoff DC, Sode K.

Biosens Bioelectron. 2017 Feb 15;88:167-173. doi: 10.1016/j.bios.2016.08.005. Epub 2016 Aug 3.

PMID:
27522349
30.

Electrochemical sensing system employing fructosamine 6-kinase enables glycated albumin measurement requiring no proteolytic digestion.

Kameya M, Tsugawa W, Yamada-Tajima M, Hatada M, Suzuki K, Sakaguchi-Mikami A, Ferri S, Klonoff DC, Sode K.

Biotechnol J. 2016 Jun;11(6):797-804. doi: 10.1002/biot.201500442. Epub 2016 Apr 21.

PMID:
27067959
31.

An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes.

Shiota M, Yamazaki T, Yoshimatsu K, Kojima K, Tsugawa W, Ferri S, Sode K.

Bioelectrochemistry. 2016 Dec;112:178-83. doi: 10.1016/j.bioelechem.2016.01.010. Epub 2016 Feb 2.

PMID:
26951961
32.

Development of a light-regulated cell-recovery system for non-photosynthetic bacteria.

Nakajima M, Abe K, Ferri S, Sode K.

Microb Cell Fact. 2016 Feb 15;15:31. doi: 10.1186/s12934-016-0426-6.

33.

Structural analysis of fungus-derived FAD glucose dehydrogenase.

Yoshida H, Sakai G, Mori K, Kojima K, Kamitori S, Sode K.

Sci Rep. 2015 Aug 27;5:13498. doi: 10.1038/srep13498.

34.

Improvement of the VEGF binding ability of DNA aptamers through in silico maturation and multimerization strategy.

Fukaya T, Abe K, Savory N, Tsukakoshi K, Yoshida W, Ferri S, Sode K, Ikebukuro K.

J Biotechnol. 2015 Oct 20;212:99-105. doi: 10.1016/j.jbiotec.2015.08.011. Epub 2015 Aug 21.

PMID:
26302839
35.

BioCapacitor: A novel principle for biosensors.

Sode K, Yamazaki T, Lee I, Hanashi T, Tsugawa W.

Biosens Bioelectron. 2016 Feb 15;76:20-8. doi: 10.1016/j.bios.2015.07.065. Epub 2015 Aug 7. Review.

36.

Enzyme linking to DNA aptamers via a zinc finger as a bridge.

Abe K, Murakami Y, Tatsumi A, Sumida K, Kezuka A, Fukaya T, Kumagai T, Osawa Y, Sode K, Ikebukuro K.

Chem Commun (Camb). 2015 Jul 21;51(57):11467-9. doi: 10.1039/c5cc02906f.

PMID:
26087673
37.

Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes.

Tajima Y, Yamamoto Y, Fukui K, Nishio Y, Hashiguchi K, Usuda Y, Sode K.

Microb Cell Fact. 2015 Jun 11;14:80. doi: 10.1186/s12934-015-0269-6.

38.

Scaffold-fused riboregulators for enhanced gene activation in Synechocystis sp. PCC 6803.

Sakai Y, Abe K, Nakashima S, Ellinger JJ, Ferri S, Sode K, Ikebukuro K.

Microbiologyopen. 2015 Aug;4(4):533-40. doi: 10.1002/mbo3.257. Epub 2015 Apr 10.

39.

Stabilization of fungi-derived recombinant FAD-dependent glucose dehydrogenase by introducing a disulfide bond.

Sakai G, Kojima K, Mori K, Oonishi Y, Sode K.

Biotechnol Lett. 2015 May;37(5):1091-9. doi: 10.1007/s10529-015-1774-8. Epub 2015 Feb 4.

PMID:
25650345
40.

The development and characterization of an exogenous green-light-regulated gene expression system in marine cyanobacteria.

Badary A, Abe K, Ferri S, Kojima K, Sode K.

Mar Biotechnol (NY). 2015 Jun;17(3):245-51. doi: 10.1007/s10126-015-9616-1. Epub 2015 Feb 1.

PMID:
25638493
41.

Advancing the development of glycated protein biosensing technology: next-generation sensing molecules.

Kameya M, Sakaguchi-Mikami A, Ferri S, Tsugawa W, Sode K.

J Diabetes Sci Technol. 2015 Mar;9(2):183-91. doi: 10.1177/1932296814565784. Epub 2015 Jan 26. Review.

42.

Klaus Mosbach tribute.

Clark DS, Karube I, Sode K, Bülow L, Brüggemann O, Lowe CR, Poulsen PB, Langer RS.

Biotechnol Bioeng. 2015 Apr;112(4):645-7. doi: 10.1002/bit.25507. Epub 2015 Jan 20. No abstract available.

PMID:
25599981
43.

Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes.

Tajima Y, Yamamoto Y, Fukui K, Nishio Y, Hashiguchi K, Usuda Y, Sode K.

Appl Environ Microbiol. 2015 Feb;81(3):929-37. doi: 10.1128/AEM.03213-14. Epub 2014 Nov 21.

44.

Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes.

Tajima Y, Kaida K, Hayakawa A, Fukui K, Nishio Y, Hashiguchi K, Fudou R, Matsui K, Usuda Y, Sode K.

Appl Microbiol Biotechnol. 2014 Sep;98(18):7803-13. doi: 10.1007/s00253-014-5884-3. Epub 2014 Jun 25.

PMID:
24962116
45.

A green-light inducible lytic system for cyanobacterial cells.

Miyake K, Abe K, Ferri S, Nakajima M, Nakamura M, Yoshida W, Kojima K, Ikebukuro K, Sode K.

Biotechnol Biofuels. 2014 Apr 9;7:56. doi: 10.1186/1754-6834-7-56. eCollection 2014.

46.

Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803.

Abe K, Miyake K, Nakamura M, Kojima K, Ferri S, Ikebukuro K, Sode K.

Microb Biotechnol. 2014 Mar;7(2):177-83. doi: 10.1111/1751-7915.12098. Epub 2013 Dec 12.

47.

Improving the gene-regulation ability of small RNAs by scaffold engineering in Escherichia coli.

Sakai Y, Abe K, Nakashima S, Yoshida W, Ferri S, Sode K, Ikebukuro K.

ACS Synth Biol. 2014 Mar 21;3(3):152-62. doi: 10.1021/sb4000959. Epub 2013 Dec 18.

PMID:
24328142
48.

Screening of peptide ligands for pyrroloquinoline quinone glucose dehydrogenase using antagonistic template-based biopanning.

Abe K, Yoshida W, Terada K, Yagi-Ishii Y, Ferri S, Ikebukuro K, Sode K.

Int J Mol Sci. 2013 Nov 25;14(12):23244-56. doi: 10.3390/ijms141223244.

49.

Design of riboregulators for control of cyanobacterial (Synechocystis) protein expression.

Abe K, Sakai Y, Nakashima S, Araki M, Yoshida W, Sode K, Ikebukuro K.

Biotechnol Lett. 2014 Feb;36(2):287-94. doi: 10.1007/s10529-013-1352-x. Epub 2013 Sep 26.

PMID:
24068508
50.

Simultaneous improvement of specificity and affinity of aptamers against Streptococcus mutans by in silico maturation for biosensor development.

Savory N, Takahashi Y, Tsukakoshi K, Hasegawa H, Takase M, Abe K, Yoshida W, Ferri S, Kumazawa S, Sode K, Ikebukuro K.

Biotechnol Bioeng. 2014 Mar;111(3):454-61. doi: 10.1002/bit.25111. Epub 2013 Sep 25.

PMID:
24018905

Supplemental Content

Support Center