Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 152

1.

Bacillus thuringiensis targets the host intestinal epithelial junctions for successful infection of Caenorhabditis elegans.

Wan L, Lin J, Du H, Zhang Y, Bravo A, Soberón M, Sun M, Peng D.

Environ Microbiol. 2019 Mar;21(3):1086-1098. doi: 10.1111/1462-2920.14528. Epub 2019 Feb 14.

PMID:
30637902
2.

Susceptible and mCry3A resistant corn rootworm larvae killed by a non-hemolytic Bacillus thuringiensis Cyt1Aa mutant.

Bravo A, López-Diaz JA, Yamamoto T, Harding K, Zhao JZ, Mendoza G, Onofre J, Torres-Quintero MC, Nelson ME, Wu G, Sethi A, Soberón M.

Sci Rep. 2018 Dec 13;8(1):17805. doi: 10.1038/s41598-018-36205-6.

3.

Identification of midgut membrane proteins from different instars of Helicoverpa armigera (Lepidoptera: Noctuidae) that bind to Cry1Ac toxin.

Da Silva IHS, Goméz I, Sánchez J, Martínez de Castro DL, Valicente FH, Soberón M, Polanczyk RA, Bravo A.

PLoS One. 2018 Dec 6;13(12):e0207789. doi: 10.1371/journal.pone.0207789. eCollection 2018.

4.

The C-terminal protoxin region of Bacillus thuringiensis Cry1Ab toxin has a functional role in binding to GPI-anchored receptors in the insect midgut.

Peña-Cardeña A, Grande R, Sánchez J, Tabashnik BE, Bravo A, Soberón M, Gómez I.

J Biol Chem. 2018 Dec 28;293(52):20263-20272. doi: 10.1074/jbc.RA118.005101. Epub 2018 Nov 1.

PMID:
30385510
5.

Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa Toxicity to Spodoptera frugiperda by Domain III Mutations Indicates There Are Two Limiting Steps in Toxicity as Defined by Receptor Binding and Protein Stability.

Gómez I, Ocelotl J, Sánchez J, Lima C, Martins E, Rosales-Juárez A, Aguilar-Medel S, Abad A, Dong H, Monnerat R, Peña G, Zhang J, Nelson M, Wu G, Bravo A, Soberón M.

Appl Environ Microbiol. 2018 Oct 1;84(20). pii: e01393-18. doi: 10.1128/AEM.01393-18. Print 2018 Oct 15.

6.

Evaluation of the Impact of Genetically Modified Cotton After 20 Years of Cultivation in Mexico.

Rocha-Munive MG, Soberón M, Castañeda S, Niaves E, Scheinvar E, Eguiarte LE, Mota-Sánchez D, Rosales-Robles E, Nava-Camberos U, Martínez-Carrillo JL, Blanco CA, Bravo A, Souza V.

Front Bioeng Biotechnol. 2018 Jun 22;6:82. doi: 10.3389/fbioe.2018.00082. eCollection 2018.

7.

Helix α-3 inter-molecular salt bridges and conformational changes are essential for toxicity of Bacillus thuringiensis 3D-Cry toxin family.

Pacheco S, Gómez I, Sánchez J, García-Gómez BI, Czajkowsky DM, Zhang J, Soberón M, Bravo A.

Sci Rep. 2018 Jul 9;8(1):10331. doi: 10.1038/s41598-018-28753-8.

8.

A single amino acid polymorphism in ABCC2 loop 1 is responsible for differential toxicity of Bacillus thuringiensis Cry1Ac toxin in different Spodoptera (Noctuidae) species.

Liu L, Chen Z, Yang Y, Xiao Y, Liu C, Ma Y, Soberón M, Bravo A, Yang Y, Liu K.

Insect Biochem Mol Biol. 2018 Sep;100:59-65. doi: 10.1016/j.ibmb.2018.06.004. Epub 2018 Jun 30.

PMID:
29964167
9.

Spodoptera frugiperda (J. E. Smith) Aminopeptidase N1 Is a Functional Receptor of the Bacillus thuringiensis Cry1Ca Toxin.

Gómez I, Rodríguez-Chamorro DE, Flores-Ramírez G, Grande R, Zúñiga F, Portugal FJ, Sánchez J, Pacheco S, Bravo A, Soberón M.

Appl Environ Microbiol. 2018 Aug 17;84(17). pii: e01089-18. doi: 10.1128/AEM.01089-18. Print 2018 Sep 1.

10.

Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer (Chilo suppressalis).

Wang Z, Fang L, Zhou Z, Pacheco S, Gómez I, Song F, Soberón M, Zhang J, Bravo A.

J Biol Chem. 2018 Jul 20;293(29):11447-11458. doi: 10.1074/jbc.RA118.003490. Epub 2018 Jun 1.

PMID:
29858245
11.

Systematic characterization of Bacillus Genetic Stock Center Bacillus thuringiensis strains using Multi-Locus Sequence Typing.

Wang K, Shu C, Soberón M, Bravo A, Zhang J.

J Invertebr Pathol. 2018 Jun;155:5-13. doi: 10.1016/j.jip.2018.04.009. Epub 2018 Apr 30.

PMID:
29723494
12.

Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity.

Torres-Quintero MC, Gómez I, Pacheco S, Sánchez J, Flores H, Osuna J, Mendoza G, Soberón M, Bravo A.

Sci Rep. 2018 Mar 21;8(1):4989. doi: 10.1038/s41598-018-22740-9.

13.

Characterization of the Cry1Ah resistance in Asian corn Borer and its cross-resistance to other Bacillus thuringiensis toxins.

Shabbir MZ, Quan Y, Wang Z, Bravo A, Soberón M, He K.

Sci Rep. 2018 Jan 10;8(1):234. doi: 10.1038/s41598-017-18586-2.

14.

Cell lines as models for the study of Cry toxins from Bacillus thuringiensis.

Soberón M, Portugal L, Garcia-Gómez BI, Sánchez J, Onofre J, Gómez I, Pacheco S, Bravo A.

Insect Biochem Mol Biol. 2018 Feb;93:66-78. doi: 10.1016/j.ibmb.2017.12.008. Epub 2017 Dec 19. Review.

PMID:
29269111
15.

Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests.

Liu Y, Wang Y, Shu C, Lin K, Song F, Bravo A, Soberón M, Zhang J.

Appl Environ Microbiol. 2018 Jan 17;84(3). pii: e01996-17. doi: 10.1128/AEM.01996-17. Print 2018 Feb 1.

16.

Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm.

Chen WB, Lu GQ, Cheng HM, Liu CX, Xiao YT, Xu C, Shen ZC, Soberón M, Bravo A, Wu KM.

Transgenic Res. 2017 Dec;26(6):763-774. doi: 10.1007/s11248-017-0048-8. Epub 2017 Nov 15.

PMID:
29143178
17.

Identification of Bacillus thuringiensis Cry1AbMod binding-proteins from Spodoptera frugiperda.

Martínez de Castro DL, García-Gómez BI, Gómez I, Bravo A, Soberón M.

Peptides. 2017 Dec;98:99-105. doi: 10.1016/j.peptides.2017.09.013. Epub 2017 Sep 27.

PMID:
28958733
18.

An Intramolecular Salt Bridge in Bacillus thuringiensis Cry4Ba Toxin Is Involved in the Stability of Helix α-3, Which Is Needed for Oligomerization and Insecticidal Activity.

Pacheco S, Gómez I, Sánchez J, García-Gómez BI, Soberón M, Bravo A.

Appl Environ Microbiol. 2017 Sep 29;83(20). pii: e01515-17. doi: 10.1128/AEM.01515-17. Print 2017 Oct 15.

19.

FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes.

Li J, Ma Y, Yuan W, Xiao Y, Liu C, Wang J, Peng J, Peng R, Soberón M, Bravo A, Yang Y, Liu K.

Insect Biochem Mol Biol. 2017 Sep;88:1-11. doi: 10.1016/j.ibmb.2017.07.004. Epub 2017 Jul 21.

PMID:
28736301
20.

ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth.

Ocelotl J, Sánchez J, Gómez I, Tabashnik BE, Bravo A, Soberón M.

Sci Rep. 2017 May 24;7(1):2386. doi: 10.1038/s41598-017-02545-y.

21.

Holotrichia oblita Midgut Proteins That Bind to Bacillus thuringiensis Cry8-Like Toxin and Assembly of the H. oblita Midgut Tissue Transcriptome.

Jiang J, Huang Y, Shu C, Soberón M, Bravo A, Liu C, Song F, Lai J, Zhang J.

Appl Environ Microbiol. 2017 May 31;83(12). pii: e00541-17. doi: 10.1128/AEM.00541-17. Print 2017 Jun 15.

22.

Identification of Aminopeptidase-N2 as a Cry2Ab binding protein in Manduca sexta.

Onofre J, Gaytán MO, Peña-Cardeña A, García-Gomez BI, Pacheco S, Gómez I, Bravo A, Soberón M.

Peptides. 2017 Dec;98:93-98. doi: 10.1016/j.peptides.2017.01.006. Epub 2017 Jan 17.

PMID:
28108197
23.

A Single Point Mutation Resulting in Cadherin Mislocalization Underpins Resistance against Bacillus thuringiensis Toxin in Cotton Bollworm.

Xiao Y, Dai Q, Hu R, Pacheco S, Yang Y, Liang G, Soberón M, Bravo A, Liu K, Wu K.

J Biol Chem. 2017 Feb 17;292(7):2933-2943. doi: 10.1074/jbc.M116.768671. Epub 2017 Jan 12.

24.

Insecticidal Specificity of Cry1Ah to Helicoverpa armigera Is Determined by Binding of APN1 via Domain II Loops 2 and 3.

Zhou Z, Liu Y, Liang G, Huang Y, Bravo A, Soberón M, Song F, Zhou X, Zhang J.

Appl Environ Microbiol. 2017 Feb 1;83(4). pii: e02864-16. doi: 10.1128/AEM.02864-16. Print 2017 Feb 15.

25.

Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway.

Portugal L, Muñóz-Garay C, Martínez de Castro DL, Soberón M, Bravo A.

Insect Biochem Mol Biol. 2017 Jan;80:21-31. doi: 10.1016/j.ibmb.2016.11.004. Epub 2016 Nov 17.

PMID:
27867074
26.

Genetic Basis of Cry1F-Resistance in a Laboratory Selected Asian Corn Borer Strain and Its Cross-Resistance to Other Bacillus thuringiensis Toxins.

Wang Y, Wang Y, Wang Z, Bravo A, Soberón M, He K.

PLoS One. 2016 Aug 12;11(8):e0161189. doi: 10.1371/journal.pone.0161189. eCollection 2016.

27.

Identification of an alkaline phosphatase as a putative Cry1Ac binding protein in Ostrinia furnacalis (Guenée).

Jin T, Duan X, Bravo A, Soberón M, Wang Z, He K.

Pestic Biochem Physiol. 2016 Jul;131:80-6. doi: 10.1016/j.pestbp.2015.12.008. Epub 2015 Dec 21.

PMID:
27265829
28.

Molecular Cloning, Expression, and Identification of Bre Genes Involved in Glycosphingolipids Synthesis in Helicoverpa armigera (Lepidoptera: Noctuidae).

Zhang D, Xiao Y, Hussain Dhiloo K, Soberon M, Bravo A, Wu K.

J Econ Entomol. 2016 May 17. pii: tow040. [Epub ahead of print]

PMID:
27190043
29.

Identification of ABCC2 as a binding protein of Cry1Ac on brush border membrane vesicles from Helicoverpa armigera by an improved pull-down assay.

Zhou Z, Wang Z, Liu Y, Liang G, Shu C, Song F, Zhou X, Bravo A, Soberón M, Zhang J.

Microbiologyopen. 2016 Aug;5(4):659-69. doi: 10.1002/mbo3.360. Epub 2016 Apr 1.

30.

Resistance to Bacillus thuringiensis Mediated by an ABC Transporter Mutation Increases Susceptibility to Toxins from Other Bacteria in an Invasive Insect.

Xiao Y, Liu K, Zhang D, Gong L, He F, Soberón M, Bravo A, Tabashnik BE, Wu K.

PLoS Pathog. 2016 Feb 12;12(2):e1005450. doi: 10.1371/journal.ppat.1005450. eCollection 2016 Feb.

31.

Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis.

Canton PE, Cancino-Rodezno A, Gill SS, Soberón M, Bravo A.

BMC Genomics. 2015 Dec 9;16:1042. doi: 10.1186/s12864-015-2240-7.

32.

Binding and Oligomerization of Modified and Native Bt Toxins in Resistant and Susceptible Pink Bollworm.

Ocelotl J, Sánchez J, Arroyo R, García-Gómez BI, Gómez I, Unnithan GC, Tabashnik BE, Bravo A, Soberón M.

PLoS One. 2015 Dec 3;10(12):e0144086. doi: 10.1371/journal.pone.0144086. eCollection 2015.

33.

Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes.

Pacheco S, Cantón E, Zuñiga-Navarrete F, Pecorari F, Bravo A, Soberón M.

AMB Express. 2015 Dec;5(1):73. doi: 10.1186/s13568-015-0160-1. Epub 2015 Nov 25.

34.

Dual mode of action of Bt proteins: protoxin efficacy against resistant insects.

Tabashnik BE, Zhang M, Fabrick JA, Wu Y, Gao M, Huang F, Wei J, Zhang J, Yelich A, Unnithan GC, Bravo A, Soberón M, Carrière Y, Li X.

Sci Rep. 2015 Oct 12;5:15107. doi: 10.1038/srep15107.

35.

Long-term trends of nitrogen and phosphorus mass balances on New York State dairy farms.

Cela S, Ketterings QM, Czymmek K, Soberon M, Rasmussen C.

J Dairy Sci. 2015 Oct;98(10):7052-70. doi: 10.3168/jds.2015-9776. Epub 2015 Aug 5.

36.

Assembling of Holotrichia parallela (dark black chafer) midgut tissue transcriptome and identification of midgut proteins that bind to Cry8Ea toxin from Bacillus thuringiensis.

Shu C, Tan S, Yin J, Soberón M, Bravo A, Liu C, Geng L, Song F, Li K, Zhang J.

Appl Microbiol Biotechnol. 2015 Sep;99(17):7209-18. doi: 10.1007/s00253-015-6755-2. Epub 2015 Jul 2.

PMID:
26135984
37.

Changes in nutrient mass balances over time and related drivers for 54 New York State dairy farms.

Soberon MA, Cela S, Ketterings QM, Rasmussen CN, Czymmek KJ.

J Dairy Sci. 2015 Aug;98(8):5313-29. doi: 10.3168/jds.2014-9236. Epub 2015 Jun 17.

38.

Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins.

Monnerat R, Martins E, Macedo C, Queiroz P, Praça L, Soares CM, Moreira H, Grisi I, Silva J, Soberon M, Bravo A.

PLoS One. 2015 Apr 1;10(4):e0119544. doi: 10.1371/journal.pone.0119544. eCollection 2015.

39.

Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12.

Zúñiga-Navarrete F, Gómez I, Peña G, Amaro I, Ortíz E, Becerril B, Ibarra JE, Bravo A, Soberón M.

Insect Biochem Mol Biol. 2015 Apr;59:50-7. doi: 10.1016/j.ibmb.2015.02.002. Epub 2015 Feb 17.

PMID:
25698611
40.

Characterization of nitrogen, phosphorus, and potassium mass balances of dairy farms in New York State.

Cela S, Ketterings QM, Czymmek K, Soberon M, Rasmussen C.

J Dairy Sci. 2014 Dec;97(12):7614-32. Epub 2014 Oct 25.

41.

Bacillus thuringiensis Cry1AbMod toxin counters tolerance associated with low cadherin expression but not that associated with low alkaline phosphatase expression in Manduca sexta.

Gómez I, Flores B, Bravo A, Soberón M.

Peptides. 2015 Jun;68:130-3. doi: 10.1016/j.peptides.2014.08.012. Epub 2014 Sep 17.

PMID:
25239508
42.

Nitric oxide participates in the toxicity of Bacillus thuringiensis Cry1Ab toxin to kill Manduca sexta larvae.

Chavez C, Recio-Tótoro B, Flores-Escobar B, Lanz-Mendoza H, Sanchez J, Soberón M, Bravo A.

Peptides. 2015 Jun;68:134-9. doi: 10.1016/j.peptides.2014.07.012. Epub 2014 Jul 23.

PMID:
25063056
43.

Synergistic activity of Bacillus thuringiensis toxins against Simulium spp. larvae.

Monnerat R, Pereira E, Teles B, Martins E, Praça L, Queiroz P, Soberon M, Bravo A, Ramos F, Soares CM.

J Invertebr Pathol. 2014 Sep;121:70-3. doi: 10.1016/j.jip.2014.07.003. Epub 2014 Jul 19.

PMID:
25051392
44.

Membrane binding and oligomer membrane insertion are necessary but insufficient for Bacillus thuringiensis Cyt1Aa toxicity.

Cantón PE, López-Díaz JA, Gill SS, Bravo A, Soberón M.

Peptides. 2014 Mar;53:286-91. doi: 10.1016/j.peptides.2013.10.011. Epub 2013 Oct 25.

45.

Bacillus thuringiensis Cry1A toxins are versatile proteins with multiple modes of action: two distinct pre-pores are involved in toxicity.

Gómez I, Sánchez J, Muñoz-Garay C, Matus V, Gill SS, Soberón M, Bravo A.

Biochem J. 2014 Apr 15;459(2):383-96. doi: 10.1042/BJ20131408.

46.

Efficacy of genetically modified Bt toxins alone and in combinations against pink bollworm resistant to Cry1Ac and Cry2Ab.

Tabashnik BE, Fabrick JA, Unnithan GC, Yelich AJ, Masson L, Zhang J, Bravo A, Soberón M.

PLoS One. 2013 Nov 7;8(11):e80496. doi: 10.1371/journal.pone.0080496. eCollection 2013.

47.

Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1.

Portugal L, Gringorten JL, Caputo GF, Soberón M, Muñoz-Garay C, Bravo A.

Peptides. 2014 Mar;53:292-9. doi: 10.1016/j.peptides.2013.10.026. Epub 2013 Nov 1.

PMID:
24189038
48.

Oligomerization is a key step in Cyt1Aa membrane insertion and toxicity but not necessary to synergize Cry11Aa toxicity in Aedes aegypti larvae.

López-Diaz JA, Cantón PE, Gill SS, Soberón M, Bravo A.

Environ Microbiol. 2013 Nov;15(11):3030-9. doi: 10.1111/1462-2920.12263. Epub 2013 Sep 24.

49.

Efficient production of Bacillus thuringiensis Cry1AMod toxins under regulation of cry3Aa promoter and single cysteine mutations in the protoxin region.

García-Gómez BI, Sánchez J, Martínez de Castro DL, Ibarra JE, Bravo A, Soberón M.

Appl Environ Microbiol. 2013 Nov;79(22):6969-73. doi: 10.1128/AEM.02546-13. Epub 2013 Sep 6.

50.

Differential role of Manduca sexta aminopeptidase-N and alkaline phosphatase in the mode of action of Cry1Aa, Cry1Ab, and Cry1Ac toxins from Bacillus thuringiensis.

Flores-Escobar B, Rodríguez-Magadan H, Bravo A, Soberón M, Gómez I.

Appl Environ Microbiol. 2013 Aug;79(15):4543-50. doi: 10.1128/AEM.01062-13. Epub 2013 May 17.

Supplemental Content

Loading ...
Support Center