Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

The influence of microRNAs and poly(A) tail length on endogenous mRNA-protein complexes.

Rissland OS, Subtelny AO, Wang M, Lugowski A, Nicholson B, Laver JD, Sidhu SS, Smibert CA, Lipshitz HD, Bartel DP.

Genome Biol. 2017 Oct 31;18(1):211. doi: 10.1186/s13059-017-1330-z.

2.

ME31B globally represses maternal mRNAs by two distinct mechanisms during the Drosophila maternal-to-zygotic transition.

Wang M, Ly M, Lugowski A, Laver JD, Lipshitz HD, Smibert CA, Rissland OS.

Elife. 2017 Sep 6;6. pii: e27891. doi: 10.7554/eLife.27891.

3.

Post-transcriptional regulation of gene expression.

Lipshitz HD, Claycomb JM, Smibert CA.

Methods. 2017 Aug 15;126:1-2. doi: 10.1016/j.ymeth.2017.08.007. No abstract available.

PMID:
28867174
4.

Cutoff Suppresses RNA Polymerase II Termination to Ensure Expression of piRNA Precursors.

Chen YA, Stuwe E, Luo Y, Ninova M, Le Thomas A, Rozhavskaya E, Li S, Vempati S, Laver JD, Patel DJ, Smibert CA, Lipshitz HD, Toth KF, Aravin AA.

Mol Cell. 2016 Jul 7;63(1):97-109. doi: 10.1016/j.molcel.2016.05.010. Epub 2016 Jun 9.

5.

A high-throughput pipeline for the production of synthetic antibodies for analysis of ribonucleoprotein complexes.

Na H, Laver JD, Jeon J, Singh F, Ancevicius K, Fan Y, Cao WX, Nie K, Yang Z, Luo H, Wang M, Rissland O, Westwood JT, Kim PM, Smibert CA, Lipshitz HD, Sidhu SS.

RNA. 2016 Apr;22(4):636-55. doi: 10.1261/rna.055186.115. Epub 2016 Feb 4.

6.

A Smaug2-Based Translational Repression Complex Determines the Balance between Precursor Maintenance versus Differentiation during Mammalian Neurogenesis.

Amadei G, Zander MA, Yang G, Dumelie JG, Vessey JP, Lipshitz HD, Smibert CA, Kaplan DR, Miller FD.

J Neurosci. 2015 Nov 25;35(47):15666-81. doi: 10.1523/JNEUROSCI.2172-15.2015.

7.

Regulation and Function of Maternal Gene Products During the Maternal-to-Zygotic Transition in Drosophila.

Laver JD, Marsolais AJ, Smibert CA, Lipshitz HD.

Curr Top Dev Biol. 2015;113:43-84. doi: 10.1016/bs.ctdb.2015.06.007. Epub 2015 Aug 14. Review.

PMID:
26358870
8.

Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during the Drosophila maternal-to-zygotic transition.

Laver JD, Li X, Ray D, Cook KB, Hahn NA, Nabeel-Shah S, Kekis M, Luo H, Marsolais AJ, Fung KY, Hughes TR, Westwood JT, Sidhu SS, Morris Q, Lipshitz HD, Smibert CA.

Genome Biol. 2015 May 12;16:94. doi: 10.1186/s13059-015-0659-4.

9.

An eIF4E1/4E-T complex determines the genesis of neurons from precursors by translationally repressing a proneurogenic transcription program.

Yang G, Smibert CA, Kaplan DR, Miller FD.

Neuron. 2014 Nov 19;84(4):723-39. doi: 10.1016/j.neuron.2014.10.022. Epub 2014 Nov 6.

10.

Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.

Chen L, Dumelie JG, Li X, Cheng MH, Yang Z, Laver JD, Siddiqui NU, Westwood JT, Morris Q, Lipshitz HD, Smibert CA.

Genome Biol. 2014 Jan 7;15(1):R4. doi: 10.1186/gb-2014-15-1-r4.

11.

Genome-wide analysis of Staufen-associated mRNAs identifies secondary structures that confer target specificity.

Laver JD, Li X, Ancevicius K, Westwood JT, Smibert CA, Morris QD, Lipshitz HD.

Nucleic Acids Res. 2013 Nov;41(20):9438-60. doi: 10.1093/nar/gkt702. Epub 2013 Aug 13.

12.

Smaug: an unexpected journey into the mechanisms of post-transcriptional regulation.

Pinder BD, Smibert CA.

Fly (Austin). 2013 Jul-Sep;7(3):142-5. doi: 10.4161/fly.24336. Epub 2013 Mar 21.

13.

microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.

Pinder BD, Smibert CA.

EMBO Rep. 2013 Jan;14(1):80-6. doi: 10.1038/embor.2012.192. Epub 2012 Nov 27.

14.

The eIF4E-binding protein Eap1p functions in Vts1p-mediated transcript decay.

Rendl LM, Bieman MA, Vari HK, Smibert CA.

PLoS One. 2012;7(10):e47121. doi: 10.1371/journal.pone.0047121. Epub 2012 Oct 10.

15.

Synthetic antibodies as tools to probe RNA-binding protein function.

Laver JD, Ancevicius K, Sollazzo P, Westwood JT, Sidhu SS, Lipshitz HD, Smibert CA.

Mol Biosyst. 2012 Jun;8(6):1650-7. doi: 10.1039/c2mb00007e. Epub 2012 Apr 5.

PMID:
22481296
16.

An essential role for the RNA-binding protein Smaug during the Drosophila maternal-to-zygotic transition.

Benoit B, He CH, Zhang F, Votruba SM, Tadros W, Westwood JT, Smibert CA, Lipshitz HD, Theurkauf WE.

Development. 2009 Mar;136(6):923-32. doi: 10.1242/dev.031815.

17.

Drosophila maternal Hsp83 mRNA destabilization is directed by multiple SMAUG recognition elements in the open reading frame.

Semotok JL, Luo H, Cooperstock RL, Karaiskakis A, Vari HK, Smibert CA, Lipshitz HD.

Mol Cell Biol. 2008 Nov;28(22):6757-72. doi: 10.1128/MCB.00037-08. Epub 2008 Sep 15. Erratum in: Mol Cell Biol. 2008 Dec;28(24):7533.

18.

S. cerevisiae Vts1p induces deadenylation-dependent transcript degradation and interacts with the Ccr4p-Pop2p-Not deadenylase complex.

Rendl LM, Bieman MA, Smibert CA.

RNA. 2008 Jul;14(7):1328-36. doi: 10.1261/rna.955508. Epub 2008 May 9.

19.

A multiprotein complex that mediates translational enhancement in Drosophila.

Nelson MR, Luo H, Vari HK, Cox BJ, Simmonds AJ, Krause HM, Lipshitz HD, Smibert CA.

J Biol Chem. 2007 Nov 23;282(47):34031-8. Epub 2007 Sep 21.

20.

SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase.

Tadros W, Goldman AL, Babak T, Menzies F, Vardy L, Orr-Weaver T, Hughes TR, Westwood JT, Smibert CA, Lipshitz HD.

Dev Cell. 2007 Jan;12(1):143-55.

21.

Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p.

Aviv T, Lin Z, Ben-Ari G, Smibert CA, Sicheri F.

Nat Struct Mol Biol. 2006 Feb;13(2):168-76. Epub 2006 Jan 22.

PMID:
16429151
22.

Mechanisms of translational regulation in Drosophila.

Wilhelm JE, Smibert CA.

Biol Cell. 2005 Apr;97(4):235-52. Review.

PMID:
15762846
23.

Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo.

Semotok JL, Cooperstock RL, Pinder BD, Vari HK, Lipshitz HD, Smibert CA.

Curr Biol. 2005 Feb 22;15(4):284-94.

24.

Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression.

Nelson MR, Leidal AM, Smibert CA.

EMBO J. 2004 Jan 14;23(1):150-9. Epub 2003 Dec 11.

25.

The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators.

Aviv T, Lin Z, Lau S, Rendl LM, Sicheri F, Smibert CA.

Nat Struct Biol. 2003 Aug;10(8):614-21.

PMID:
12858164
26.

Mechanisms of RNA localization and translational regulation.

Lipshitz HD, Smibert CA.

Curr Opin Genet Dev. 2000 Oct;10(5):476-88. Review.

PMID:
10980424
27.

Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro.

Smibert CA, Lie YS, Shillinglaw W, Henzel WJ, Macdonald PM.

RNA. 1999 Dec;5(12):1535-47.

28.

smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo.

Smibert CA, Wilson JE, Kerr K, Macdonald PM.

Genes Dev. 1996 Oct 15;10(20):2600-9.

29.

Translational regulation of maternal mRNAs.

Macdonald PM, Smibert CA.

Curr Opin Genet Dev. 1996 Aug;6(4):403-7. Review.

PMID:
8791537
30.

Herpes simplex virus VP16 rescues viral mRNA from destruction by the virion host shutoff function.

Lam Q, Smibert CA, Koop KE, Lavery C, Capone JP, Weinheimer SP, Smiley JR.

EMBO J. 1996 May 15;15(10):2575-81.

32.

Herpes simplex virus VP16 forms a complex with the virion host shutoff protein vhs.

Smibert CA, Popova B, Xiao P, Capone JP, Smiley JR.

J Virol. 1994 Apr;68(4):2339-46.

33.

Identification and characterization of the virion-induced host shutoff product of herpes simplex virus gene UL41.

Smibert CA, Johnson DC, Smiley JR.

J Gen Virol. 1992 Feb;73 ( Pt 2):467-70.

PMID:
1311370

Supplemental Content

Loading ...
Support Center