Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 91

1.

Naïve CD4+ T Cells Harbor a Large Inducible Reservoir of Latent, Replication-Competent HIV-1.

Zerbato JM, McMahon DK, Sobolewski MD, Mellors JW, Sluis-Cremer N.

Clin Infect Dis. 2019 Feb 7. doi: 10.1093/cid/ciz108. [Epub ahead of print]

PMID:
30753360
2.

Small molecule inhibitor of FosA expands fosfomycin activity to multidrug-resistant Gram-negative pathogens.

Tomich AD, Klontz EH, Deredge D, Barnard JP, McElheny CL, Eshbach ML, Weisz OA, Wintrode P, Doi Y, Sundberg EJ, Sluis-Cremer N.

Antimicrob Agents Chemother. 2019 Jan 14. pii: AAC.01524-18. doi: 10.1128/AAC.01524-18. [Epub ahead of print]

PMID:
30642934
3.

Inhibitors of Signaling Pathways That Block Reversal of HIV-1 Latency.

Vargas B, Giacobbi NS, Sanyal A, Venkatachari NJ, Han F, Gupta P, Sluis-Cremer N.

Antimicrob Agents Chemother. 2019 Jan 29;63(2). pii: e01744-18. doi: 10.1128/AAC.01744-18. Print 2019 Feb.

PMID:
30455231
4.

Future of nonnucleoside reverse transcriptase inhibitors.

Sluis-Cremer N.

Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):637-638. doi: 10.1073/pnas.1720975115. Epub 2018 Jan 11. No abstract available.

5.

Origin of the plasmid-mediated fosfomycin resistance gene fosA3.

Ito R, Pacey MP, Mettus RT, Sluis-Cremer N, Doi Y.

J Antimicrob Chemother. 2018 Feb 1;73(2):373-376. doi: 10.1093/jac/dkx389.

6.

High-Level Fosfomycin Resistance in Vancomycin-Resistant Enterococcus faecium.

Guo Y, Tomich AD, McElheny CL, Cooper VS, Tait-Kamradt A, Wang M, Hu F, Rice LB, Sluis-Cremer N, Doi Y.

Emerg Infect Dis. 2017 Nov;23(11):1902-1904. doi: 10.3201/eid2311.171130.

7.

Inhibition of Fosfomycin Resistance Protein FosA by Phosphonoformate (Foscarnet) in Multidrug-Resistant Gram-Negative Pathogens.

Ito R, Tomich AD, McElheny CL, Mettus RT, Sluis-Cremer N, Doi Y.

Antimicrob Agents Chemother. 2017 Nov 22;61(12). pii: e01424-17. doi: 10.1128/AAC.01424-17. Print 2017 Dec.

8.

Structure and Dynamics of FosA-Mediated Fosfomycin Resistance in Klebsiella pneumoniae and Escherichia coli.

Klontz EH, Tomich AD, Günther S, Lemkul JA, Deredge D, Silverstein Z, Shaw JF, McElheny C, Doi Y, Wintrode PL, MacKerell AD Jr, Sluis-Cremer N, Sundberg EJ.

Antimicrob Agents Chemother. 2017 Oct 24;61(11). pii: e01572-17. doi: 10.1128/AAC.01572-17. Print 2017 Nov.

9.

Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene.

Ito R, Mustapha MM, Tomich AD, Callaghan JD, McElheny CL, Mettus RT, Shanks RMQ, Sluis-Cremer N, Doi Y.

MBio. 2017 Aug 29;8(4). pii: e00749-17. doi: 10.1128/mBio.00749-17.

10.

Novel assay reveals a large, inducible, replication-competent HIV-1 reservoir in resting CD4+ T cells.

Sanyal A, Mailliard RB, Rinaldo CR, Ratner D, Ding M, Chen Y, Zerbato JM, Giacobbi NS, Venkatachari NJ, Patterson BK, Chargin A, Sluis-Cremer N, Gupta P.

Nat Med. 2017 Jul;23(7):885-889. doi: 10.1038/nm.4347. Epub 2017 May 29.

11.
12.

Nonnucleoside Reverse Transcriptase Inhibitors Reduce HIV-1 Production from Latently Infected Resting CD4+ T Cells following Latency Reversal.

Zerbato JM, Tachedjian G, Sluis-Cremer N.

Antimicrob Agents Chemother. 2017 Feb 23;61(3). pii: e01736-16. doi: 10.1128/AAC.01736-16. Print 2017 Mar.

13.

Increasing prevalence of K65K and K66K in HIV-1 subtype B reverse transcriptase.

Telwatte S, Brumme CJ, Hearps AC, Latham CF, Hayward JA, Sonza S, Sluis-Cremer N, Harrigan PR, Tachedjian G.

AIDS. 2016 Nov 28;30(18):2787-2793.

PMID:
27677159
14.

Establishment and Reversal of HIV-1 Latency in Naive and Central Memory CD4+ T Cells In Vitro.

Zerbato JM, Serrao E, Lenzi G, Kim B, Ambrose Z, Watkins SC, Engelman AN, Sluis-Cremer N.

J Virol. 2016 Aug 26;90(18):8059-73. doi: 10.1128/JVI.00553-16. Print 2016 Sep 15.

15.

Glutathione-S-transferase FosA6 of Klebsiella pneumoniae origin conferring fosfomycin resistance in ESBL-producing Escherichia coli.

Guo Q, Tomich AD, McElheny CL, Cooper VS, Stoesser N, Wang M, Sluis-Cremer N, Doi Y.

J Antimicrob Chemother. 2016 Sep;71(9):2460-5. doi: 10.1093/jac/dkw177. Epub 2016 Jun 3.

16.

Resistance to reverse transcriptase inhibitors used in the treatment and prevention of HIV-1 infection.

Sluis-Cremer N, Wainberg MA, Schinazi RF.

Future Microbiol. 2015;10(11):1773-82. doi: 10.2217/fmb.15.106. Epub 2015 Oct 30. Review.

17.

Temporal transcriptional response to latency reversing agents identifies specific factors regulating HIV-1 viral transcriptional switch.

Venkatachari NJ, Zerbato JM, Jain S, Mancini AE, Chattopadhyay A, Sluis-Cremer N, Bar-Joseph Z, Ayyavoo V.

Retrovirology. 2015 Oct 6;12:85. doi: 10.1186/s12977-015-0211-3.

18.

Therapeutic Approaches to Eradicate Latent HIV-1 in Resting CD4+ T Cells.

Sluis-Cremer N.

Curr Top Med Chem. 2016;16(10):1191-7. Review.

PMID:
26324046
19.

Identification of mechanistically distinct inhibitors of HIV-1 reverse transcriptase through fragment screening.

La J, Latham CF, Tinetti RN, Johnson A, Tyssen D, Huber KD, Sluis-Cremer N, Simpson JS, Headey SJ, Chalmers DK, Tachedjian G.

Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6979-84. doi: 10.1073/pnas.1423900112. Epub 2015 May 18.

20.

Silent mutations at codons 65 and 66 in reverse transcriptase alleviate indel formation and restore fitness in subtype B HIV-1 containing D67N and K70R drug resistance mutations.

Telwatte S, Hearps AC, Johnson A, Latham CF, Moore K, Agius P, Tachedjian M, Sonza S, Sluis-Cremer N, Harrigan PR, Tachedjian G.

Nucleic Acids Res. 2015 Mar 31;43(6):3256-71. doi: 10.1093/nar/gkv128. Epub 2015 Mar 12.

21.

Mechanism of allosteric inhibition of HIV-1 reverse transcriptase revealed by single-molecule and ensemble fluorescence.

Schauer GD, Huber KD, Leuba SH, Sluis-Cremer N.

Nucleic Acids Res. 2014 Oct;42(18):11687-96. doi: 10.1093/nar/gku819. Epub 2014 Sep 17.

22.

The emerging profile of cross-resistance among the nonnucleoside HIV-1 reverse transcriptase inhibitors.

Sluis-Cremer N.

Viruses. 2014 Jul 31;6(8):2960-73. doi: 10.3390/v6082960. Review.

23.

Novel high-throughput screen identifies an HIV-1 reverse transcriptase inhibitor with a unique mechanism of action.

Sheen CW, Alptürk O, Sluis-Cremer N.

Biochem J. 2014 Sep 15;462(3):425-32. doi: 10.1042/BJ20140365.

24.

E138A in HIV-1 reverse transcriptase is more common in subtype C than B: implications for rilpivirine use in resource-limited settings.

Sluis-Cremer N, Jordan MR, Huber K, Wallis CL, Bertagnolio S, Mellors JW, Parkin NT, Harrigan PR.

Antiviral Res. 2014 Jul;107:31-4. doi: 10.1016/j.antiviral.2014.04.001. Epub 2014 Apr 16.

25.

Discovery of a small molecule agonist of phosphatidylinositol 3-kinase p110α that reactivates latent HIV-1.

Doyon G, Sobolewski MD, Huber K, McMahon D, Mellors JW, Sluis-Cremer N.

PLoS One. 2014 Jan 29;9(1):e84964. doi: 10.1371/journal.pone.0084964. eCollection 2014.

26.

Competitive fitness assays indicate that the E138A substitution in HIV-1 reverse transcriptase decreases in vitro susceptibility to emtricitabine.

Sluis-Cremer N, Huber KD, Brumme CJ, Harrigan PR.

Antimicrob Agents Chemother. 2014;58(4):2430-3. doi: 10.1128/AAC.02114-13. Epub 2014 Jan 13.

27.

In vitro characterization of a sustained-release formulation for enfuvirtide.

Rothstein SN, Huber KD, Sluis-Cremer N, Little SR.

Antimicrob Agents Chemother. 2014;58(3):1797-9. doi: 10.1128/AAC.02440-13. Epub 2013 Dec 23.

28.

Molecular mechanism of HIV-1 resistance to 3'-azido-2',3'-dideoxyguanosine.

Meteer JD, Schinazi RF, Mellors JW, Sluis-Cremer N.

Antiviral Res. 2014 Jan;101:62-7. doi: 10.1016/j.antiviral.2013.10.017. Epub 2013 Nov 7.

29.
30.

Evidence for biphasic uncoating during HIV-1 infection from a novel imaging assay.

Xu H, Franks T, Gibson G, Huber K, Rahm N, Strambio De Castillia C, Luban J, Aiken C, Watkins S, Sluis-Cremer N, Ambrose Z.

Retrovirology. 2013 Jul 9;10:70. doi: 10.1186/1742-4690-10-70.

31.

Replication fitness of multiple nonnucleoside reverse transcriptase-resistant HIV-1 variants in the presence of etravirine measured by 454 deep sequencing.

Brumme CJ, Huber KD, Dong W, Poon AF, Harrigan PR, Sluis-Cremer N.

J Virol. 2013 Aug;87(15):8805-7. doi: 10.1128/JVI.00335-13. Epub 2013 May 29.

32.

Biophysical Insights into the Inhibitory Mechanism of Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors.

Schauer G, Leuba S, Sluis-Cremer N.

Biomolecules. 2013 Nov 1;3(4):889-904. doi: 10.3390/biom3040889.

33.

N348I in HIV-1 reverse transcriptase counteracts the synergy between zidovudine and nevirapine.

Yap SH, Herman BD, Radzio J, Sluis-Cremer N, Tachedjian G.

J Acquir Immune Defic Syndr. 2012 Oct 1;61(2):153-7.

34.

Disulfiram reactivates latent HIV-1 expression through depletion of the phosphatase and tensin homolog.

Doyon G, Zerbato J, Mellors JW, Sluis-Cremer N.

AIDS. 2013 Jan 14;27(2):F7-F11. doi: 10.1097/QAD.0b013e3283570620.

PMID:
22739395
35.

Frequent emergence of N348I in HIV-1 subtype C reverse transcriptase with failure of initial therapy reduces susceptibility to reverse-transcriptase inhibitors.

Brehm JH, Koontz DL, Wallis CL, Shutt KA, Sanne I, Wood R, McIntyre JA, Stevens WS, Sluis-Cremer N, Mellors JW; CIPRA-SA Project 1 Study Team.

Clin Infect Dis. 2012 Sep;55(5):737-45. Epub 2012 May 22.

36.

Development of a robust cytopathic effect-based high-throughput screening assay to identify novel inhibitors of dengue virus.

McCormick KD, Liu S, Jacobs JL, Marques ET Jr, Sluis-Cremer N, Wang T.

Antimicrob Agents Chemother. 2012 Jun;56(6):3399-401. doi: 10.1128/AAC.06425-11. Epub 2012 Mar 5.

37.

Zidovudine (AZT) monotherapy selects for the A360V mutation in the connection domain of HIV-1 reverse transcriptase.

Brehm JH, Scott Y, Koontz DL, Perry S, Hammer S, Katzenstein D, Mellors JW, Sluis-Cremer N; AIDS Clinical Trials Group Study 175 Protocol Team.

PLoS One. 2012;7(2):e31558. doi: 10.1371/journal.pone.0031558. Epub 2012 Feb 21.

38.

Substrate mimicry: HIV-1 reverse transcriptase recognizes 6-modified-3'-azido-2',3'-dideoxyguanosine-5'-triphosphates as adenosine analogs.

Herman BD, Schinazi RF, Zhang HW, Nettles JH, Stanton R, Detorio M, Obikhod A, Pradère U, Coats SJ, Mellors JW, Sluis-Cremer N.

Nucleic Acids Res. 2012 Jan;40(1):381-90. doi: 10.1093/nar/gkr756. Epub 2011 Sep 13.

39.

Subunit-specific mutational analysis of residue N348 in HIV-1 reverse transcriptase.

Radzio J, Sluis-Cremer N.

Retrovirology. 2011 Aug 22;8:69. doi: 10.1186/1742-4690-8-69.

40.

Synthesis, antiviral activity, cytotoxicity and cellular pharmacology of l-3'-azido-2',3'-dideoxypurine nucleosides.

Zhang HW, Detorio M, Herman BD, Solomon S, Bassit L, Nettles JH, Obikhod A, Tao SJ, Mellors JW, Sluis-Cremer N, Coats SJ, Schinazi RF.

Eur J Med Chem. 2011 Sep;46(9):3832-44. doi: 10.1016/j.ejmech.2011.05.051. Epub 2011 May 30.

41.

The base component of 3'-azido-2',3'-dideoxynucleosides influences resistance mutations selected in HIV-1 reverse transcriptase.

Meteer JD, Koontz D, Asif G, Zhang HW, Detorio M, Solomon S, Coats SJ, Sluis-Cremer N, Schinazi RF, Mellors JW.

Antimicrob Agents Chemother. 2011 Aug;55(8):3758-64. doi: 10.1128/AAC.00414-11. Epub 2011 Jun 6.

42.

Synthesis and anti-HIV evaluation of 3'-triazolo nucleosides.

Roy V, Obikhod A, Zhang HW, Coats SJ, Herman BD, Sluis-Cremer N, Agrofoglio LA, Schinazi RF.

Nucleosides Nucleotides Nucleic Acids. 2011 Apr;30(4):264-70. doi: 10.1080/15257770.2011.580291.

PMID:
21623540
43.

Inhibitors of histone deacetylases: correlation between isoform specificity and reactivation of HIV type 1 (HIV-1) from latently infected cells.

Huber K, Doyon G, Plaks J, Fyne E, Mellors JW, Sluis-Cremer N.

J Biol Chem. 2011 Jun 24;286(25):22211-8. doi: 10.1074/jbc.M110.180224. Epub 2011 Apr 29.

44.

Failure of initial therapy with two nucleosides and efavirenz is not associated with early emergence of mutations in the C-terminus of HIV-1 reverse transcriptase.

Brehm JH, Lalama CM, Hughes MD, Haubrich R, Riddler SA, Sluis-Cremer N, Mellors JW; AIDS Clinical Trials Group Study A5142 Protocol Team.

J Acquir Immune Defic Syndr. 2011 Apr;56(4):344-8. doi: 10.1097/QAI.0b013e31820cf029.

45.

Synthesis and Anti-HIV-1 Activity of a Novel Series of Aminoimidazole Analogs.

Ganguly S, Murugesan S, Prasanthi N, Alptürk O, Herman B, Sluis-Cremer N.

Lett Drug Des Discov. 2010 Jun 1;7(5):318-323.

46.

The RNA binding protein HuR does not interact directly with HIV-1 reverse transcriptase and does not affect reverse transcription in vitro.

Ahn J, Byeon IJ, Dharmasena S, Huber K, Concel J, Gronenborn AM, Sluis-Cremer N.

Retrovirology. 2010 May 7;7:40. doi: 10.1186/1742-4690-7-40.

47.

The acyclic 2,4-diaminopyrimidine nucleoside phosphonate acts as a purine mimetic in HIV-1 reverse transcriptase DNA polymerization.

Herman BD, Votruba I, Holy A, Sluis-Cremer N, Balzarini J.

J Biol Chem. 2010 Apr 16;285(16):12101-8. doi: 10.1074/jbc.M109.096529. Epub 2010 Feb 17.

48.
49.

N348I in HIV-1 reverse transcriptase decreases susceptibility to tenofovir and etravirine in combination with other resistance mutations.

Sluis-Cremer N, Moore K, Radzio J, Sonza S, Tachedjian G.

AIDS. 2010 Jan 16;24(2):317-9. doi: 10.1097/QAD.0b013e3283315697.

50.

Synthesis and evaluation of 3'-azido-2',3'-dideoxypurine nucleosides as inhibitors of human immunodeficiency virus.

Zhang HW, Coats SJ, Bondada L, Amblard F, Detorio M, Asif G, Fromentin E, Solomon S, Obikhod A, Whitaker T, Sluis-Cremer N, Mellors JW, Schinazi RF.

Bioorg Med Chem Lett. 2010 Jan 1;20(1):60-4. doi: 10.1016/j.bmcl.2009.11.031. Epub 2009 Nov 13.

Supplemental Content

Loading ...
Support Center