Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 74

1.

Corrigendum: Mechanisms underlying the activity-dependent regulation of locomotor network performance by the Na+ pump.

Zhang HY, Picton L, Li WC, Sillar KT.

Sci Rep. 2017 Dec 22;7:46909. doi: 10.1038/srep46909.

2.

Developmental changes in spinal neuronal properties, motor network configuration, and neuromodulation at free-swimming stages of Xenopus tadpoles.

Currie SP, Sillar KT.

J Neurophysiol. 2018 Mar 1;119(3):786-795. doi: 10.1152/jn.00219.2017. Epub 2017 Nov 15.

PMID:
29142093
3.

Sodium pump regulation of locomotor control circuits.

Picton LD, Zhang H, Sillar KT.

J Neurophysiol. 2017 Aug 1;118(2):1070-1081. doi: 10.1152/jn.00066.2017. Epub 2017 May 24. Review.

4.

Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks.

Picton LD, Nascimento F, Broadhead MJ, Sillar KT, Miles GB.

J Neurosci. 2017 Jan 25;37(4):906-921. doi: 10.1523/JNEUROSCI.2005-16.2016.

5.
6.

Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles.

Currie SP, Doherty GH, Sillar KT.

Proc Natl Acad Sci U S A. 2016 May 24;113(21):6053-8. doi: 10.1073/pnas.1515516113. Epub 2016 May 10.

7.

A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles.

Currie SP, Combes D, Scott NW, Simmers J, Sillar KT.

J Neurophysiol. 2016 Mar;115(3):1446-57. doi: 10.1152/jn.00283.2015. Epub 2016 Jan 13.

8.

Mechanisms underlying the activity-dependent regulation of locomotor network performance by the Na+ pump.

Zhang HY, Picton L, Li WC, Sillar KT.

Sci Rep. 2015 Nov 6;5:16188. doi: 10.1038/srep16188. Erratum in: Sci Rep. 2017 Dec 22;7:46909.

9.

Neuromodulation in developing motor microcircuits.

Sillar KT, Combes D, Simmers J.

Curr Opin Neurobiol. 2014 Dec;29:73-81. doi: 10.1016/j.conb.2014.05.009. Epub 2014 Jun 24. Review.

PMID:
24967995
10.

Nitric oxide-mediated modulation of the murine locomotor network.

Foster JD, Dunford C, Sillar KT, Miles GB.

J Neurophysiol. 2014 Feb;111(3):659-74. doi: 10.1152/jn.00378.2013. Epub 2013 Nov 20.

11.

A switch in aminergic modulation of locomotor CPG output during amphibian metamorphosis.

Combes D, Sillar KT, Simmers J.

Front Biosci (Schol Ed). 2012 Jun 1;4:1364-74. Review.

PMID:
22652878
12.

Short-term memory of motor network performance via activity-dependent potentiation of Na+/K+ pump function.

Zhang HY, Sillar KT.

Curr Biol. 2012 Mar 20;22(6):526-31. doi: 10.1016/j.cub.2012.01.058. Epub 2012 Mar 8.

13.

Neuromodulation of vertebrate locomotor control networks.

Miles GB, Sillar KT.

Physiology (Bethesda). 2011 Dec;26(6):393-411. doi: 10.1152/physiol.00013.2011. Review.

14.

Development of a spinal locomotor rheostat.

Zhang HY, Issberner J, Sillar KT.

Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11674-9. doi: 10.1073/pnas.1018512108. Epub 2011 Jun 27.

15.

Long-lasting effects of chemical hypoxia on spinal cord function in tadpoles.

Robertson RM, Björnfors ER, Sillar KT.

Neuroreport. 2010 Oct 6;21(14):943-7. doi: 10.1097/WNR.0b013e32833e332d.

PMID:
20697300
16.

The nitric oxide/cGMP pathway tunes the thermosensitivity of swimming motor patterns in Xenopus laevis tadpoles.

Robertson RM, Sillar KT.

J Neurosci. 2009 Nov 4;29(44):13945-51. doi: 10.1523/JNEUROSCI.3841-09.2009.

17.

Nitric oxide potentiation of locomotor activity in the spinal cord of the lamprey.

Kyriakatos A, Molinari M, Mahmood R, Grillner S, Sillar KT, El Manira A.

J Neurosci. 2009 Oct 21;29(42):13283-91. doi: 10.1523/JNEUROSCI.3069-09.2009.

18.

Escape behaviour: reciprocal inhibition ensures effective escape trajectory.

Sillar KT.

Curr Biol. 2009 Aug 25;19(16):R697-9. doi: 10.1016/j.cub.2009.07.015.

19.

Electrical coupling synchronises spinal motoneuron activity during swimming in hatchling Xenopus tadpoles.

Zhang HY, Li WC, Heitler WJ, Sillar KT.

J Physiol. 2009 Sep 15;587(Pt 18):4455-66. doi: 10.1113/jphysiol.2009.173468. Epub 2009 Jul 27.

20.

Thermal activation of escape swimming in post-hatching Xenopus laevis frog larvae.

Sillar KT, Robertson RM.

J Exp Biol. 2009 Aug;212(Pt 15):2356-64. doi: 10.1242/jeb.029892.

21.

Mauthner cells.

Sillar KT.

Curr Biol. 2009 May 12;19(9):R353-5. doi: 10.1016/j.cub.2009.02.025. Review. No abstract available.

22.

Group I mGluRs increase locomotor network excitability in Xenopus tadpoles via presynaptic inhibition of glycinergic neurotransmission.

Chapman RJ, Issberner JP, Sillar KT.

Eur J Neurosci. 2008 Sep;28(5):903-13. doi: 10.1111/j.1460-9568.2008.06391.x. Epub 2008 Aug 8.

PMID:
18691329
23.

Synthesis, conformation and biological evaluation of the enantiomers of 3-fluoro-gamma-aminobutyric acid ((R)- and (S)-3F-GABA): an analogue of the neurotransmitter GABA.

Deniau G, Slawin AM, Lebl T, Chorki F, Issberner JP, van Mourik T, Heygate JM, Lambert JJ, Etherington LA, Sillar KT, O'Hagan D.

Chembiochem. 2007 Dec 17;8(18):2265-74.

PMID:
17990263
24.

Nitric oxide modulation of the electrically excitable skin of Xenopus laevis frog tadpoles.

Alpert MH, Zhang H, Molinari M, Heitler WJ, Sillar KT.

J Exp Biol. 2007 Nov;210(Pt 22):3910-8.

25.

The contribution of the NMDA receptor glycine site to rhythm generation during fictive swimming in Xenopus laevis tadpoles.

Issberner JP, Sillar KT.

Eur J Neurosci. 2007 Nov;26(9):2556-64. Epub 2007 Oct 23.

PMID:
17970719
26.

Neuromodulation and developmental plasticity in the locomotor system of anuran amphibians during metamorphosis.

Sillar KT, Combes D, Ramanathan S, Molinari M, Simmers J.

Brain Res Rev. 2008 Jan;57(1):94-102. Epub 2007 Aug 22. Review.

PMID:
17900702
27.

Modulation of a spinal locomotor network by metabotropic glutamate receptors.

Chapman RJ, Sillar KT.

Eur J Neurosci. 2007 Oct;26(8):2257-68. Epub 2007 Sep 25.

PMID:
17894819
28.

Development and neuromodulation of spinal locomotor networks in the metamorphosing frog.

Rauscent A, Le Ray D, Cabirol-Pol MJ, Sillar KT, Simmers J, Combes D.

J Physiol Paris. 2006 Nov-Dec;100(5-6):317-27. Epub 2007 Jun 8. Review.

PMID:
17629683
30.

Metamodulation of a spinal locomotor network by nitric oxide.

McLean DL, Sillar KT.

J Neurosci. 2004 Oct 27;24(43):9561-71.

31.

Developmental segregation of spinal networks driving axial- and hindlimb-based locomotion in metamorphosing Xenopus laevis.

Combes D, Merrywest SD, Simmers J, Sillar KT.

J Physiol. 2004 Aug 15;559(Pt 1):17-24. Epub 2004 Jul 2.

32.

Divergent actions of serotonin receptor activation during fictive swimming in frog embryos.

McLean DL, Sillar KT.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 May;190(5):391-402. Epub 2004 Feb 26.

PMID:
14991304
33.

Evolutionary divergence in developmental strategies and neuromodulatory control systems of two amphibian locomotor networks.

Merrywest SD, McLean DL, Buchanan JT, Sillar KT.

Integr Comp Biol. 2004 Feb;44(1):47-56. doi: 10.1093/icb/44.1.47.

PMID:
21680485
34.

Spinal and supraspinal functions of noradrenaline in the frog embryo: consequences for motor behaviour.

McLean DL, Sillar KT.

J Physiol. 2003 Sep 1;551(Pt 2):575-87. Epub 2003 Aug 8.

35.

The in vitro and in vivo enantioselectivity of etomidate implicates the GABAA receptor in general anaesthesia.

Belelli D, Muntoni AL, Merrywest SD, Gentet LJ, Casula A, Callachan H, Madau P, Gemmell DK, Hamilton NM, Lambert JJ, Sillar KT, Peters JA.

Neuropharmacology. 2003 Jul;45(1):57-71.

PMID:
12814659
36.

Mechanisms underlying the noradrenergic modulation of longitudinal coordination during swimming in Xenopus laevis tadpoles.

Merrywest SD, McDearmid JR, Kjaerulff O, Kiehn O, Sillar KT.

Eur J Neurosci. 2003 Mar;17(5):1013-22.

PMID:
12653977
37.

Fast inhibitory synapses: targets for neuromodulation and development of vertebrate motor behaviour.

Sillar KT, McLean DL, Fischer H, Merrywest SD.

Brain Res Brain Res Rev. 2002 Oct;40(1-3):130-40.

PMID:
12589912
38.

Nitric oxide selectively tunes inhibitory synapses to modulate vertebrate locomotion.

McLean DL, Sillar KT.

J Neurosci. 2002 May 15;22(10):4175-84.

39.
41.

Adrenoreceptor-mediated modulation of the spinal locomotor pattern during swimming in Xenopus laevis tadpoles.

Fischer H, Merrywest SD, Sillar KT.

Eur J Neurosci. 2001 Mar;13(5):977-86.

PMID:
11264670
42.

Induction of a non-rhythmic motor pattern by nitric oxide in hatchling Rana temporaria embryos.

McLean DL, McDearmid JR, Sillar KT.

J Exp Biol. 2001 Apr;204(Pt 7):1307-17.

43.

The development of neuromodulatory systems and the maturation of motor patterns in amphibian tadpoles.

McLean DL, Merrywest SD, Sillar KT.

Brain Res Bull. 2000 Nov 15;53(5):595-603. Review.

PMID:
11165795
46.

Effects of noradrenaline on locomotor rhythm-generating networks in the isolated neonatal rat spinal cord.

Kiehn O, Sillar KT, Kjaerulff O, McDearmid JR.

J Neurophysiol. 1999 Aug;82(2):741-6.

47.

Development and aminergic neuromodulation of a spinal locomotor network controlling swimming in Xenopus larvae.

Sillar KT, Reith CA, McDearmid JR.

Ann N Y Acad Sci. 1998 Nov 16;860:318-32. Review.

PMID:
9928322
49.
50.

Aminergic modulation of glycine release in a spinal network controlling swimming in Xenopus laevis.

McDearmid JR, Scrymgeour-Wedderburn JF, Sillar KT.

J Physiol. 1997 Aug 15;503 ( Pt 1):111-7.

Supplemental Content

Loading ...
Support Center