Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 42

1.

Phenotypic MicroArray Screening of Neisseria gonorrhoeae in Chemically Defined Liquid Medium.

Baarda BI, Sikora AE.

Methods Mol Biol. 2019;1997:207-216. doi: 10.1007/978-1-4939-9496-0_13.

PMID:
31119626
2.

Bioinformatics Workflow for Gonococcal Proteomics.

El-Rami FE, Sikora AE.

Methods Mol Biol. 2019;1997:185-205. doi: 10.1007/978-1-4939-9496-0_12.

PMID:
31119625
3.

Neisseria gonorrhoeae MlaA influences gonococcal virulence and membrane vesicle production.

Baarda BI, Zielke RA, Le Van A, Jerse AE, Sikora AE.

PLoS Pathog. 2019 Mar 7;15(3):e1007385. doi: 10.1371/journal.ppat.1007385. eCollection 2019 Mar.

4.

PubMLST for Antigen Allele Mining to Inform Development of Gonorrhea Protein-Based Vaccines.

Baarda BI, Zielke RA, Nicholas RA, Sikora AE.

Front Microbiol. 2018 Dec 7;9:2971. doi: 10.3389/fmicb.2018.02971. eCollection 2018.

5.

Proteomics, Bioinformatics and Structure-Function Antigen Mining For Gonorrhea Vaccines.

Baarda BI, Martinez FG, Sikora AE.

Front Immunol. 2018 Dec 4;9:2793. doi: 10.3389/fimmu.2018.02793. eCollection 2018. Review.

6.

Lipid-Modified Azurin of Neisseria gonorrhoeae Is Not Surface Exposed and Does Not Interact With the Nitrite Reductase AniA.

Baarda BI, Zielke RA, Jerse AE, Sikora AE.

Front Microbiol. 2018 Nov 27;9:2915. doi: 10.3389/fmicb.2018.02915. eCollection 2018.

7.

Reductive Metabolism of Xanthohumol and 8-Prenylnaringenin by the Intestinal Bacterium Eubacterium ramulus.

Paraiso IL, Plagmann LS, Yang L, Zielke R, Gombart AF, Maier CS, Sikora AE, Blakemore PR, Stevens JF.

Mol Nutr Food Res. 2019 Jan;63(2):e1800923. doi: 10.1002/mnfr.201800923. Epub 2018 Dec 3.

PMID:
30471194
8.

Quantitative Proteomics of the 2016 WHO Neisseria gonorrhoeae Reference Strains Surveys Vaccine Candidates and Antimicrobial Resistance Determinants.

El-Rami FE, Zielke RA, Wi T, Sikora AE, Unemo M.

Mol Cell Proteomics. 2019 Jan;18(1):127-150. doi: 10.1074/mcp.RA118.001125. Epub 2018 Oct 23.

PMID:
30352803
9.

Transkingdom network reveals bacterial players associated with cervical cancer gene expression program.

Lam KC, Vyshenska D, Hu J, Rodrigues RR, Nilsen A, Zielke RA, Brown NS, Aarnes EK, Sikora AE, Shulzhenko N, Lyng H, Morgun A.

PeerJ. 2018 Sep 19;6:e5590. doi: 10.7717/peerj.5590. eCollection 2018.

11.

Utilization of Vibrio cholerae as a Model Organism to Screen Natural Product Libraries for Identification of New Antibiotics.

Sikora AE, Tehan R, McPhail K.

Methods Mol Biol. 2018;1839:135-146. doi: 10.1007/978-1-4939-8685-9_12.

PMID:
30047060
12.

SliC is a surface-displayed lipoprotein that is required for the anti-lysozyme strategy during Neisseria gonorrhoeae infection.

Zielke RA, Le Van A, Baarda BI, Herrera MF, Acosta CJ, Jerse AE, Sikora AE.

PLoS Pathog. 2018 Jul 5;14(7):e1007081. doi: 10.1371/journal.ppat.1007081. eCollection 2018 Jul.

13.

Jizanpeptins, Cyanobacterial Protease Inhibitors from a Symploca sp. Cyanobacterium Collected in the Red Sea.

Gallegos DA, Saurí J, Cohen RD, Wan X, Videau P, Vallota-Eastman AO, Shaala LA, Youssef DTA, Williamson RT, Martin GE, Philmus B, Sikora AE, Ishmael JE, McPhail KL.

J Nat Prod. 2018 Jun 22;81(6):1417-1425. doi: 10.1021/acs.jnatprod.8b00117. Epub 2018 May 29.

PMID:
29808677
14.

Structural and functional insights into the role of BamD and BamE within the β-barrel assembly machinery in Neisseria gonorrhoeae.

Sikora AE, Wierzbicki IH, Zielke RA, Ryner RF, Korotkov KV, Buchanan SK, Noinaj N.

J Biol Chem. 2018 Jan 26;293(4):1106-1119. doi: 10.1074/jbc.RA117.000437. Epub 2017 Dec 11.

15.

Infection: Proof of principle for effectiveness of a gonorrhoea vaccine.

Unemo M, Sikora AE.

Nat Rev Urol. 2017 Nov;14(11):643-644. doi: 10.1038/nrurol.2017.139. Epub 2017 Aug 31. No abstract available.

16.

Detection of bacterial-reactive natural IgM antibodies in desert bighorn sheep populations.

Dugovich BS, Peel MJ, Palmer AL, Zielke RA, Sikora AE, Beechler BR, Jolles AE, Epps CW, Dolan BP.

PLoS One. 2017 Jun 29;12(6):e0180415. doi: 10.1371/journal.pone.0180415. eCollection 2017.

17.

Deciphering the Function of New Gonococcal Vaccine Antigens Using Phenotypic Microarrays.

Baarda BI, Emerson S, Proteau PJ, Sikora AE.

J Bacteriol. 2017 Aug 8;199(17). pii: e00037-17. doi: 10.1128/JB.00037-17. Print 2017 Sep 1.

18.

Peptide Inhibitors Targeting the Neisseria gonorrhoeae Pivotal Anaerobic Respiration Factor AniA.

Sikora AE, Mills RH, Weber JV, Hamza A, Passow BW, Romaine A, Williamson ZA, Reed RW, Zielke RA, Korotkov KV.

Antimicrob Agents Chemother. 2017 Jul 25;61(8). pii: e00186-17. doi: 10.1128/AAC.00186-17. Print 2017 Aug.

19.

Experimental vaccine induces Th1-driven immune responses and resistance to Neisseria gonorrhoeae infection in a murine model.

Liu Y, Hammer LA, Liu W, Hobbs MM, Zielke RA, Sikora AE, Jerse AE, Egilmez NK, Russell MW.

Mucosal Immunol. 2017 Nov;10(6):1594-1608. doi: 10.1038/mi.2017.11. Epub 2017 Mar 1.

21.

Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism.

Greer RL, Dong X, Moraes AC, Zielke RA, Fernandes GR, Peremyslova E, Vasquez-Perez S, Schoenborn AA, Gomes EP, Pereira AC, Ferreira SR, Yao M, Fuss IJ, Strober W, Sikora AE, Taylor GA, Gulati AS, Morgun A, Shulzhenko N.

Nat Commun. 2016 Nov 14;7:13329. doi: 10.1038/ncomms13329.

22.

The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization.

Unemo M, Golparian D, Sánchez-Busó L, Grad Y, Jacobsson S, Ohnishi M, Lahra MM, Limnios A, Sikora AE, Wi T, Harris SR.

J Antimicrob Chemother. 2016 Nov;71(11):3096-3108. Epub 2016 Jul 17.

23.

Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea.

Zielke RA, Wierzbicki IH, Baarda BI, Gafken PR, Soge OO, Holmes KK, Jerse AE, Unemo M, Sikora AE.

Mol Cell Proteomics. 2016 Jul;15(7):2338-55. doi: 10.1074/mcp.M116.058800. Epub 2016 May 2.

24.

Targeting an Essential GTPase Obg for the Development of Broad-Spectrum Antibiotics.

Bonventre JA, Zielke RA, Korotkov KV, Sikora AE.

PLoS One. 2016 Feb 5;11(2):e0148222. doi: 10.1371/journal.pone.0148222. eCollection 2016.

25.

Proteomics of Neisseria gonorrhoeae: the treasure hunt for countermeasures against an old disease.

Baarda BI, Sikora AE.

Front Microbiol. 2015 Oct 26;6:1190. doi: 10.3389/fmicb.2015.01190. eCollection 2015. Review.

26.

The Neisseria gonorrhoeae Obg protein is an essential ribosome-associated GTPase and a potential drug target.

Zielke RA, Wierzbicki IH, Baarda BI, Sikora AE.

BMC Microbiol. 2015 Jun 30;15:129. doi: 10.1186/s12866-015-0453-1.

27.

A metalloprotease secreted by the type II secretion system links Vibrio cholerae with collagen.

Park BR, Zielke RA, Wierzbicki IH, Mitchell KC, Withey JH, Sikora AE.

J Bacteriol. 2015 Mar;197(6):1051-64. doi: 10.1128/JB.02329-14. Epub 2015 Jan 5.

28.

Isolation of Cell Envelopes and Naturally Released Membrane Vesicles of Neisseria gonorrhoeae.

Zielke RA, Sikora AE.

Curr Protoc Microbiol. 2014 Aug 1;34:4A.3.1-17. doi: 10.1002/9780471729259.mc04a03s34.

PMID:
25082007
29.

Quantitative proteomic analysis of the cell envelopes and native membrane vesicles derived from gram-negative bacteria.

Zielke RA, Gafken PR, Sikora AE.

Curr Protoc Microbiol. 2014 Aug 1;34:1F.3.1-16. doi: 10.1002/9780471729259.mc01f03s34.

PMID:
25082006
30.

The type II secretion pathway in Vibrio cholerae is characterized by growth phase-dependent expression of exoprotein genes and is positively regulated by σE.

Zielke RA, Simmons RS, Park BR, Nonogaki M, Emerson S, Sikora AE.

Infect Immun. 2014 Jul;82(7):2788-801. doi: 10.1128/IAI.01292-13. Epub 2014 Apr 14.

31.

Quantitative proteomics of the Neisseria gonorrhoeae cell envelope and membrane vesicles for the discovery of potential therapeutic targets.

Zielke RA, Wierzbicki IH, Weber JV, Gafken PR, Sikora AE.

Mol Cell Proteomics. 2014 May;13(5):1299-317. doi: 10.1074/mcp.M113.029538. Epub 2014 Mar 8.

32.

Development of a quantitative assay amenable for high-throughput screening to target the type II secretion system for new treatments against plant-pathogenic bacteria.

Tran N, Zielke RA, Vining OB, Azevedo MD, Armstrong DJ, Banowetz GM, McPhail KL, Sikora AE.

J Biomol Screen. 2013 Sep;18(8):921-9. doi: 10.1177/1087057113485426. Epub 2013 Apr 11.

PMID:
23580665
33.

Proteins secreted via the type II secretion system: smart strategies of Vibrio cholerae to maintain fitness in different ecological niches.

Sikora AE.

PLoS Pathog. 2013 Feb;9(2):e1003126. doi: 10.1371/journal.ppat.1003126. Epub 2013 Feb 21. Review. No abstract available.

34.

Fluorescence microscopy and proteomics to investigate subcellular localization, assembly, and function of the type II secretion system.

Johnson TL, Sikora AE, Zielke RA, Sandkvist M.

Methods Mol Biol. 2013;966:157-72. doi: 10.1007/978-1-62703-245-2_10.

PMID:
23299734
35.

Antimicrobial rubrolides from a South African species of Synoicum tunicate.

Sikorska J, Parker-Nance S, Davies-Coleman MT, Vining OB, Sikora AE, McPhail KL.

J Nat Prod. 2012 Oct 26;75(10):1824-7. doi: 10.1021/np300580z. Epub 2012 Oct 2.

36.

Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins, including three related serine proteases.

Sikora AE, Zielke RA, Lawrence DA, Andrews PC, Sandkvist M.

J Biol Chem. 2011 May 13;286(19):16555-66. doi: 10.1074/jbc.M110.211078. Epub 2011 Mar 8.

37.

Cell envelope perturbation induces oxidative stress and changes in iron homeostasis in Vibrio cholerae.

Sikora AE, Beyhan S, Bagdasarian M, Yildiz FH, Sandkvist M.

J Bacteriol. 2009 Sep;191(17):5398-408. doi: 10.1128/JB.00092-09. Epub 2009 Jun 19.

38.

Docking and assembly of the type II secretion complex of Vibrio cholerae.

Lybarger SR, Johnson TL, Gray MD, Sikora AE, Sandkvist M.

J Bacteriol. 2009 May;191(9):3149-61. doi: 10.1128/JB.01701-08. Epub 2009 Feb 27.

39.

Compromised outer membrane integrity in Vibrio cholerae Type II secretion mutants.

Sikora AE, Lybarger SR, Sandkvist M.

J Bacteriol. 2007 Dec;189(23):8484-95. Epub 2007 Sep 21.

40.

DNA replication defect in the Escherichia coli cgtA(ts) mutant arising from reduced DnaA levels.

Sikora AE, Zielke R, Wegrzyn A, Wegrzyn G.

Arch Microbiol. 2006 Jun;185(5):340-7. Epub 2006 Mar 4.

PMID:
16518617
41.

The Vibrio harveyi GTPase CgtAV is essential and is associated with the 50S ribosomal subunit.

Sikora AE, Zielke R, Datta K, Maddock JR.

J Bacteriol. 2006 Feb;188(3):1205-10.

42.

Biochemical properties of the Vibrio harveyi CgtAV GTPase.

Sikora AE, Datta K, Maddock JR.

Biochem Biophys Res Commun. 2006 Jan 27;339(4):1165-70. Epub 2005 Dec 5.

PMID:
16343434

Supplemental Content

Loading ...
Support Center