Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 23

1.

Anaerobic Growth and Maintenance of Mammalian Cell Lines.

Plotkin BJ, Sigar IM, Swartzendruber JA, Kaminski A.

J Vis Exp. 2018 Jul 21;(137). doi: 10.3791/58049.

PMID:
30080196
2.

Differential expression of cytokines and receptor expression during anoxic growth.

Plotkin BJ, Sigar IM, Swartzendruber JA, Kaminski A, Davis J.

BMC Res Notes. 2018 Jun 25;11(1):406. doi: 10.1186/s13104-018-3520-5.

3.

Prevalence of a Cefazolin Inoculum Effect Associated with blaZ Gene Types among Methicillin-Susceptible Staphylococcus aureus Isolates from Four Major Medical Centers in Chicago.

Wang SK, Gilchrist A, Loukitcheva A, Plotkin BJ, Sigar IM, Gross AE, O'Donnell JN, Pettit N, Buros A, O'Driscoll T, Rhodes NJ, Bethel C, Segreti J, Charnot-Katsikas A, Singh K, Scheetz MH.

Antimicrob Agents Chemother. 2018 Jul 27;62(8). pii: e00382-18. doi: 10.1128/AAC.00382-18. Print 2018 Aug.

4.

Elimination of Mycoplasma contamination in Chlamydia stocks as a result of in vivo passage or plaque isolation.

Sigar IM, Schripsema JH, Kelly KA, Murthy AK, Manam S, Ramsey KH.

BMC Res Notes. 2018 Jun 7;11(1):361. doi: 10.1186/s13104-018-3455-x.

5.

A method for the long-term cultivation of mammalian cells in the absence of oxygen: Characterization of cell replication, hypoxia-inducible factor expression and reactive oxygen species production.

Plotkin BJ, Davis JW, Strizzi L, Lee P, Christoffersen-Cebi J, Kacmar J, Rivero OJ, Elsayed N, Zanghi N, Ito B, Sigar IM.

Tissue Cell. 2018 Feb;50:59-68. doi: 10.1016/j.tice.2017.12.004. Epub 2017 Dec 15.

PMID:
29429519
6.

Determination of Biofilm Initiation on Virus-infected Cells by Bacteria and Fungi.

Plotkin BJ, Sigar IM, Tiwari V, Halkyard S.

J Vis Exp. 2016 Jul 6;(113). doi: 10.3791/54162.

7.

Herpes Simplex Virus (HSV) Modulation of Staphylococcus aureus and Candida albicans Initiation of HeLa 299 Cell-Associated Biofilm.

Plotkin BJ, Sigar IM, Tiwari V, Halkyard S.

Curr Microbiol. 2016 May;72(5):529-37. doi: 10.1007/s00284-015-0975-7. Epub 2016 Jan 13.

8.

Detection of Chlamydia infection in Peromyscus species rodents from sylvatic and laboratory sources.

Ramsey KH, Sigar IM, Schripsema JH, Townsend KE, Barry RJ, Peters J, Platt KB.

Pathog Dis. 2016 Apr;74(3). pii: ftv129. doi: 10.1093/femspd/ftv129. Epub 2016 Jan 4.

PMID:
26733499
9.

Genomic variant representation in a Chlamydia population is dynamic and adaptive with dependence on in vitro and in vivo passage.

Jasper DK, Sigar IM, Schripsema JH, Sainvil CK, Smith CL, Yeruva L, Rank RG, Murthy AK, Widder JR, Ramsey KH.

Pathog Dis. 2015 Feb;73(1):1-12. doi: 10.1093/femspd/ftv003. Epub 2015 Jan 28.

10.

Plasmid deficiency in urogenital isolates of Chlamydia trachomatis reduces infectivity and virulence in a mouse model.

Sigar IM, Schripsema JH, Wang Y, Clarke IN, Cutcliffe LT, Seth-Smith HM, Thomson NR, Bjartling C, Unemo M, Persson K, Ramsey KH.

Pathog Dis. 2014 Feb;70(1):61-9. doi: 10.1111/2049-632X.12086. Epub 2013 Sep 10.

11.

Role of heparan sulfate in sexually transmitted infections.

Tiwari V, Maus E, Sigar IM, Ramsey KH, Shukla D.

Glycobiology. 2012 Nov;22(11):1402-12. doi: 10.1093/glycob/cws106. Epub 2012 Jul 6. Review.

12.

A role for CXC chemokine receptor-2 in the pathogenesis of urogenital Chlamydia muridarum infection in mice.

Lee HY, Schripsema JH, Sigar IM, Lacy SR, Kasimos JN, Murray CM, Ramsey KH.

FEMS Immunol Med Microbiol. 2010 Oct;60(1):49-56. doi: 10.1111/j.1574-695X.2010.00715.x.

13.

A link between neutrophils and chronic disease manifestations of Chlamydia muridarum urogenital infection of mice.

Lee HY, Schripsema JH, Sigar IM, Murray CM, Lacy SR, Ramsey KH.

FEMS Immunol Med Microbiol. 2010 Jun 1;59(1):108-16. doi: 10.1111/j.1574-695X.2010.00668.x. Epub 2010 Mar 10.

14.

Strain and virulence diversity in the mouse pathogen Chlamydia muridarum.

Ramsey KH, Sigar IM, Schripsema JH, Denman CJ, Bowlin AK, Myers GA, Rank RG.

Infect Immun. 2009 Aug;77(8):3284-93. doi: 10.1128/IAI.00147-09. Epub 2009 May 26.

15.

A role for matrix metalloproteinase-9 in pathogenesis of urogenital Chlamydia muridarum infection in mice.

Imtiaz MT, Distelhorst JT, Schripsema JH, Sigar IM, Kasimos JN, Lacy SR, Ramsey KH.

Microbes Infect. 2007 Nov-Dec;9(14-15):1561-6. Epub 2007 Sep 8.

16.

Outcome of urogenital infection with Chlamydia muridarum in CD14 gene knockout mice.

Imtiaz MT, Schripsema JH, Sigar IM, Ramsey KH.

BMC Infect Dis. 2006 Sep 22;6:144.

17.
18.

Expression of matrix metalloproteinases subsequent to urogenital Chlamydia muridarum infection of mice.

Ramsey KH, Sigar IM, Schripsema JH, Shaba N, Cohoon KP.

Infect Immun. 2005 Oct;73(10):6962-73.

19.

Histopathologic changes related to fibrotic oviduct occlusion after genital tract infection of mice with Chlamydia muridarum.

Shah AA, Schripsema JH, Imtiaz MT, Sigar IM, Kasimos J, Matos PG, Inouye S, Ramsey KH.

Sex Transm Dis. 2005 Jan;32(1):49-56.

PMID:
15614121
20.

Inducible nitric oxide synthase regulates production of isoprostanes in vivo during chlamydial genital infection in mice.

Ramsey KH, Sigar IM, Rana SV, Gupta J, Holland SM, Byrne GI, Morrow JD.

Infect Immun. 2003 Dec;71(12):7183-7.

21.

Chlamydia trachomatis enhances the expression of matrix metalloproteinases in an in vitro model of the human fallopian tube infection.

Ault KA, Kelly KA, Ruther PE, Izzo AA, Izzo LS, Sigar IM, Ramsey KH.

Am J Obstet Gynecol. 2002 Nov;187(5):1377-83.

PMID:
12439534
22.
23.

Chlamydia trachomatis persistence in the female mouse genital tract: inducible nitric oxide synthase and infection outcome.

Ramsey KH, Miranpuri GS, Sigar IM, Ouellette S, Byrne GI.

Infect Immun. 2001 Aug;69(8):5131-7.

Supplemental Content

Loading ...
Support Center