Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 83

1.

Spatial Patterns and Age-Related Changes of the Collagen Crimp in the Human Cornea and Sclera.

Gogola A, Jan NJ, Brazile B, Lam P, Lathrop KL, Chan KC, Sigal IA.

Invest Ophthalmol Vis Sci. 2018 Jun 1;59(7):2987-2998. doi: 10.1167/iovs.17-23474.

2.

Seeing the Hidden Lamina: Effects of Exsanguination on the Optic Nerve Head.

Tran H, Wallace J, Zhu Z, Lucy KA, Voorhees AP, Schmitt SE, Bilonick RA, Schuman JS, Smith MA, Wollstein G, Sigal IA.

Invest Ophthalmol Vis Sci. 2018 May 1;59(6):2564-2575. doi: 10.1167/iovs.17-23356.

3.

Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa.

Wang B, Lucy KA, Schuman JS, Sigal IA, Bilonick RA, Lu C, Liu J, Grulkowski I, Nadler Z, Ishikawa H, Kagemann L, Fujimoto JG, Wollstein G.

Sci Rep. 2018 May 8;8(1):7281. doi: 10.1038/s41598-018-25645-9.

4.

Crimp around the globe; patterns of collagen crimp across the corneoscleral shell.

Jan NJ, Brazile BL, Hu D, Grube G, Wallace J, Gogola A, Sigal IA.

Exp Eye Res. 2018 Jul;172:159-170. doi: 10.1016/j.exer.2018.04.003. Epub 2018 Apr 13.

PMID:
29660327
5.

Polarized light microscopy for 3-dimensional mapping of collagen fiber architecture in ocular tissues.

Yang B, Jan NJ, Brazile B, Voorhees A, Lathrop KL, Sigal IA.

J Biophotonics. 2018 Apr 6:e201700356. doi: 10.1002/jbio.201700356. [Epub ahead of print]

PMID:
29633576
6.

Collagen fiber recruitment: A microstructural basis for the nonlinear response of the posterior pole of the eye to increases in intraocular pressure.

Jan NJ, Sigal IA.

Acta Biomater. 2018 May;72:295-305. doi: 10.1016/j.actbio.2018.03.026. Epub 2018 Mar 21.

PMID:
29574185
7.

Gaze-Evoked Deformations in Optic Nerve Head Drusen: Repetitive Shearing as a Potential Factor in the Visual and Vascular Complications.

Sibony PA, Wei J, Sigal IA.

Ophthalmology. 2018 Jun;125(6):929-937. doi: 10.1016/j.ophtha.2017.12.006. Epub 2018 Apr 2.

PMID:
29361354
8.

An imaged-based inverse finite element method to determine in-vivo mechanical properties of the human trabecular meshwork.

Pant AD, Kagemann L, Schuman JS, Sigal IA, Amini R.

J Model Ophthalmol. 2017;1(3):100-111.

9.

Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biomechanics.

Hua Y, Voorhees AP, Sigal IA.

Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):154-165. doi: 10.1167/iovs.17-22488.

10.

Correlation between Cerebral Hemodynamic and Perfusion Pressure Changes in Non-Human Primates.

Ruesch A, Smith MA, Wollstein G, Sigal IA, Nelson S, Kainerstorfer JM.

Proc SPIE Int Soc Opt Eng. 2017 Feb;10059. pii: 100591P. doi: 10.1117/12.2252550.

11.

In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure.

Wang B, Tran H, Smith MA, Kostanyan T, Schmitt SE, Bilonick RA, Jan NJ, Kagemann L, Tyler-Kabara EC, Ishikawa H, Schuman JS, Sigal IA, Wollstein G.

PLoS One. 2017 Nov 21;12(11):e0188302. doi: 10.1371/journal.pone.0188302. eCollection 2017.

12.

Lamina Cribrosa Pore Shape and Size as Predictors of Neural Tissue Mechanical Insult.

Voorhees AP, Jan NJ, Austin ME, Flanagan JG, Sivak JM, Bilonick RA, Sigal IA.

Invest Ophthalmol Vis Sci. 2017 Oct 1;58(12):5336-5346. doi: 10.1167/iovs.17-22015.

13.

Formalin Fixation and Cryosectioning Cause Only Minimal Changes in Shape or Size of Ocular Tissues.

Tran H, Jan NJ, Hu D, Voorhees A, Schuman JS, Smith MA, Wollstein G, Sigal IA.

Sci Rep. 2017 Sep 21;7(1):12065. doi: 10.1038/s41598-017-12006-1.

14.

Location of the Central Retinal Vessel Trunk in the Laminar and Prelaminar Tissue of Healthy and Glaucomatous Eyes.

Wang B, Lucy KA, Schuman JS, Ishikawa H, Bilonick RA, Sigal IA, Kagemann L, Lu C, Fujimoto JG, Wollstein G.

Sci Rep. 2017 Aug 30;7(1):9930. doi: 10.1038/s41598-017-10042-5.

15.

Microstructural Crimp of the Lamina Cribrosa and Peripapillary Sclera Collagen Fibers.

Jan NJ, Gomez C, Moed S, Voorhees AP, Schuman JS, Bilonick RA, Sigal IA.

Invest Ophthalmol Vis Sci. 2017 Jul 1;58(9):3378-3388. doi: 10.1167/iovs.17-21811.

16.

Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa.

Voorhees AP, Jan NJ, Sigal IA.

Acta Biomater. 2017 Aug;58:278-290. doi: 10.1016/j.actbio.2017.05.042. Epub 2017 May 18.

17.

Whole-globe biomechanics using high-field MRI.

Voorhees AP, Ho LC, Jan NJ, Tran H, van der Merwe Y, Chan K, Sigal IA.

Exp Eye Res. 2017 Jul;160:85-95. doi: 10.1016/j.exer.2017.05.004. Epub 2017 May 17.

18.

Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility.

Lucy KA, Wang B, Schuman JS, Bilonick RA, Ling Y, Kagemann L, Sigal IA, Grulkowski I, Liu JJ, Fujimoto JG, Ishikawa H, Wollstein G.

Invest Ophthalmol Vis Sci. 2017 Mar 1;58(3):1751-1757. doi: 10.1167/iovs.16-20784.

19.

Collagen Architecture of the Posterior Pole: High-Resolution Wide Field of View Visualization and Analysis Using Polarized Light Microscopy.

Jan NJ, Lathrop K, Sigal IA.

Invest Ophthalmol Vis Sci. 2017 Feb 1;58(2):735-744. doi: 10.1167/iovs.16-20772.

20.

Mapping in-vivo optic nerve head strains caused by intraocular and intracranial pressures.

Tran H, Grimm J, Wang B, Smith MA, Gogola A, Nelson S, Tyler-Kabara E, Schuman J, Wollstein G, Sigal IA.

Proc SPIE Int Soc Opt Eng. 2017 Feb;10067. pii: 100670B. doi: 10.1117/12.2257360.

21.

Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury.

Fortune B, Reynaud J, Hardin C, Wang L, Sigal IA, Burgoyne CF.

Invest Ophthalmol Vis Sci. 2016 Aug 1;57(10):4403-11. doi: 10.1167/iovs.16-20000.

22.

Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation.

Ho LC, Sigal IA, Jan NJ, Yang X, van der Merwe Y, Yu Y, Chau Y, Leung CK, Conner IP, Jin T, Wu EX, Kim SG, Wollstein G, Schuman JS, Chan KC.

Sci Rep. 2016 Aug 26;6:32080. doi: 10.1038/srep32080.

23.

Identifying the Palisades of Vogt in Human Ex Vivo Tissue.

Sigal IA, Steele J, Drexler S, Lathrop KL.

Ocul Surf. 2016 Oct;14(4):435-439. doi: 10.1016/j.jtos.2016.07.003. Epub 2016 Aug 9.

24.

What is a typical optic nerve head?

Voorhees AP, Grimm JL, Bilonick RA, Kagemann L, Ishikawa H, Schuman JS, Wollstein G, Sigal IA.

Exp Eye Res. 2016 Aug;149:40-47. doi: 10.1016/j.exer.2016.06.012. Epub 2016 Jun 23.

25.

Decreased Lamina Cribrosa Beam Thickness and Pore Diameter Relative to Distance From the Central Retinal Vessel Trunk.

Wang B, Lucy KA, Schuman JS, Sigal IA, Bilonick RA, Kagemann L, Kostanyan T, Lu C, Liu J, Grulkowski I, Fujimoto JG, Ishikawa H, Wollstein G.

Invest Ophthalmol Vis Sci. 2016 Jun 1;57(7):3088-92. doi: 10.1167/iovs.15-19010.

26.

Regionally Discrete Aqueous Humor Outflow Quantification Using Fluorescein Canalograms.

Loewen RT, Brown EN, Roy P, Schuman JS, Sigal IA, Loewen NA.

PLoS One. 2016 Mar 21;11(3):e0151754. doi: 10.1371/journal.pone.0151754. eCollection 2016.

27.

MAPS - a Magic Angle Positioning System for Enhanced Imaging in High-Field Small-Bore MRI.

Squires A, Chan KC, Ho LC, Sigal IA, Jan NJ, Tse ZTH.

J Med Robot Res. 2016 Mar;1(1). pii: 1640004. doi: 10.1142/S2424905X16400043. Epub 2016 Mar 31.

28.

A Problem of Proportions in OCT-Based Morphometry and a Proposed Solution.

Sigal IA, Schuman JS, Ishikawa H, Kagemann L, Wollstein G.

Invest Ophthalmol Vis Sci. 2016 Feb;57(2):484-5. doi: 10.1167/iovs.15-18570. No abstract available.

29.

Use and Misuse of Laplace's Law in Ophthalmology.

Chung CW, Girard MJ, Jan NJ, Sigal IA.

Invest Ophthalmol Vis Sci. 2016 Jan 1;57(1):236-45. doi: 10.1167/iovs.15-18053. Review.

30.

Polarization microscopy for characterizing fiber orientation of ocular tissues.

Jan NJ, Grimm JL, Tran H, Lathrop KL, Wollstein G, Bilonick RA, Ishikawa H, Kagemann L, Schuman JS, Sigal IA.

Biomed Opt Express. 2015 Nov 5;6(12):4705-18. doi: 10.1364/BOE.6.004705. eCollection 2015 Dec 1.

31.

Histogram Matching Extends Acceptable Signal Strength Range on Optical Coherence Tomography Images.

Chen CL, Ishikawa H, Wollstein G, Bilonick RA, Sigal IA, Kagemann L, Schuman JS.

Invest Ophthalmol Vis Sci. 2015 Jun;56(6):3810-9. doi: 10.1167/iovs.15-16502.

32.

In Vivo Evaluation of White Matter Integrity and Anterograde Transport in Visual System After Excitotoxic Retinal Injury With Multimodal MRI and OCT.

Ho LC, Wang B, Conner IP, van der Merwe Y, Bilonick RA, Kim SG, Wu EX, Sigal IA, Wollstein G, Schuman JS, Chan KC.

Invest Ophthalmol Vis Sci. 2015 Jun;56(6):3788-800. doi: 10.1167/iovs.14-15552.

33.

Parameters for lithium treatment are critical in its enhancement of fracture-healing in rodents.

Bernick J, Wang Y, Sigal IA, Alman BA, Whyne CM, Nam D.

J Bone Joint Surg Am. 2014 Dec 3;96(23):1990-8. doi: 10.2106/JBJS.N.00057.

34.

In vivo three-dimensional characterization of the healthy human lamina cribrosa with adaptive optics spectral-domain optical coherence tomography.

Nadler Z, Wang B, Schuman JS, Ferguson RD, Patel A, Hammer DX, Bilonick RA, Ishikawa H, Kagemann L, Sigal IA, Wollstein G.

Invest Ophthalmol Vis Sci. 2014 Sep 16;55(10):6459-66. doi: 10.1167/iovs.14-15177.

35.

Application of Elliptic Fourier analysis to describe the lamina cribrosa shape with age and intraocular pressure.

Sanfilippo PG, Grimm JL, Flanagan JG, Lathrop KL, Sigal IA.

Exp Eye Res. 2014 Nov;128:1-7. doi: 10.1016/j.exer.2014.08.013. Epub 2014 Sep 2.

36.

Magic angle-enhanced MRI of fibrous microstructures in sclera and cornea with and without intraocular pressure loading.

Ho LC, Sigal IA, Jan NJ, Squires A, Tse Z, Wu EX, Kim SG, Schuman JS, Chan KC.

Invest Ophthalmol Vis Sci. 2014 Aug 7;55(9):5662-72. doi: 10.1167/iovs.14-14561.

37.

Recent advances in OCT imaging of the lamina cribrosa.

Sigal IA, Wang B, Strouthidis NG, Akagi T, Girard MJ.

Br J Ophthalmol. 2014 Jul;98 Suppl 2:ii34-9. doi: 10.1136/bjophthalmol-2013-304751. Review.

38.

Translating ocular biomechanics into clinical practice: current state and future prospects.

Girard MJ, Dupps WJ, Baskaran M, Scarcelli G, Yun SH, Quigley HA, Sigal IA, Strouthidis NG.

Curr Eye Res. 2015 Jan;40(1):1-18. doi: 10.3109/02713683.2014.914543. Epub 2014 May 15. Review.

39.

Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence tomography.

Nadler Z, Wang B, Wollstein G, Nevins JE, Ishikawa H, Bilonick R, Kagemann L, Sigal IA, Ferguson RD, Patel A, Hammer DX, Schuman JS.

Biomed Opt Express. 2014 Mar 10;5(4):1114-23. doi: 10.1364/BOE.5.001114. eCollection 2014 Apr 1.

40.

Reproducibility of in-vivo OCT measured three-dimensional human lamina cribrosa microarchitecture.

Wang B, Nevins JE, Nadler Z, Wollstein G, Ishikawa H, Bilonick RA, Kagemann L, Sigal IA, Grulkowski I, Liu JJ, Kraus M, Lu CD, Hornegger J, Fujimoto JG, Schuman JS.

PLoS One. 2014 Apr 18;9(4):e95526. doi: 10.1371/journal.pone.0095526. eCollection 2014.

41.

A method to estimate biomechanics and mechanical properties of optic nerve head tissues from parameters measurable using optical coherence tomography.

Sigal IA, Grimm JL, Schuman JS, Kagemann L, Ishikawa H, Wollstein G.

IEEE Trans Med Imaging. 2014 Jun;33(6):1381-9. doi: 10.1109/TMI.2014.2312133. Epub 2014 Mar 14.

42.

Gold nanorods as a contrast agent for Doppler optical coherence tomography.

Wang B, Kagemann L, Schuman JS, Ishikawa H, Bilonick RA, Ling Y, Sigal IA, Nadler Z, Francis A, Sandrian MG, Wollstein G.

PLoS One. 2014 Mar 3;9(3):e90690. doi: 10.1371/journal.pone.0090690. eCollection 2014.

43.

Characterisation of Schlemm's canal cross-sectional area.

Kagemann L, Nevins JE, Jan NJ, Wollstein G, Ishikawa H, Kagemann J, Sigal IA, Nadler Z, Ling Y, Schuman JS.

Br J Ophthalmol. 2014 Jul;98 Suppl 2:ii10-4. doi: 10.1136/bjophthalmol-2013-304629. Epub 2014 Mar 3.

44.

IOP elevation reduces Schlemm's canal cross-sectional area.

Kagemann L, Wang B, Wollstein G, Ishikawa H, Nevins JE, Nadler Z, Sigal IA, Bilonick RA, Schuman JS.

Invest Ophthalmol Vis Sci. 2014 Mar 25;55(3):1805-9. doi: 10.1167/iovs.13-13264.

45.

Eye-specific IOP-induced displacements and deformations of human lamina cribrosa.

Sigal IA, Grimm JL, Jan NJ, Reid K, Minckler DS, Brown DJ.

Invest Ophthalmol Vis Sci. 2014 Jan 2;55(1):1-15. doi: 10.1167/iovs.13-12724.

46.

In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography.

Wang B, Nevins JE, Nadler Z, Wollstein G, Ishikawa H, Bilonick RA, Kagemann L, Sigal IA, Grulkowski I, Liu JJ, Kraus M, Lu CD, Hornegger J, Fujimoto JG, Schuman JS.

Invest Ophthalmol Vis Sci. 2013 Dec 19;54(13):8270-4. doi: 10.1167/iovs.13-13109.

47.

Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes.

Nadler Z, Wang B, Wollstein G, Nevins JE, Ishikawa H, Kagemann L, Sigal IA, Ferguson RD, Hammer DX, Grulkowski I, Liu JJ, Kraus MF, Lu CD, Hornegger J, Fujimoto JG, Schuman JS.

Biomed Opt Express. 2013 Oct 24;4(11):2596-608. doi: 10.1364/BOE.4.002596. eCollection 2013.

48.

Signal normalization reduces systematic measurement differences between spectral-domain optical coherence tomography devices.

Chen CL, Ishikawa H, Ling Y, Wollstein G, Bilonick RA, Xu J, Fujimoto JG, Sigal IA, Kagemann L, Schuman JS.

Invest Ophthalmol Vis Sci. 2013 Nov 5;54(12):7317-22. doi: 10.1167/iovs.13-12806.

49.

Individual A-scan signal normalization between two spectral domain optical coherence tomography devices.

Chen CL, Ishikawa H, Wollstein G, Ling Y, Bilonick RA, Kagemann L, Sigal IA, Schuman JS.

Invest Ophthalmol Vis Sci. 2013 May 17;54(5):3463-71. doi: 10.1167/iovs.12-11484.

50.

High dynamic range imaging concept-based signal enhancement method reduced the optical coherence tomography measurement variability.

Ishikawa H, Chen CL, Wollstein G, Grimm JL, Ling Y, Bilonick RA, Sigal IA, Kagemann L, Schuman JS.

Invest Ophthalmol Vis Sci. 2013 Jan 30;54(1):836-41. doi: 10.1167/iovs.12-10990.

Supplemental Content

Loading ...
Support Center