Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 84

1.

Integration of a multi-step heterologous pathway in Saccharomyces cerevisiae for the production of abscisic acid.

Otto M, Teixeira PG, Vizcaino MI, David F, Siewers V.

Microb Cell Fact. 2019 Nov 25;18(1):205. doi: 10.1186/s12934-019-1257-z.

2.

Model-Assisted Fine-Tuning of Central Carbon Metabolism in Yeast through dCas9-Based Regulation.

Ferreira R, Skrekas C, Hedin A, Sánchez BJ, Siewers V, Nielsen J, David F.

ACS Synth Biol. 2019 Nov 15;8(11):2457-2463. doi: 10.1021/acssynbio.9b00258. Epub 2019 Oct 14.

PMID:
31577419
3.

Expanding the Dynamic Range of a Transcription Factor-Based Biosensor in Saccharomyces cerevisiae.

Dabirian Y, Li X, Chen Y, David F, Nielsen J, Siewers V.

ACS Synth Biol. 2019 Sep 20;8(9):1968-1975. doi: 10.1021/acssynbio.9b00144. Epub 2019 Aug 9.

PMID:
31373795
4.

FadR-Based Biosensor-Assisted Screening for Genes Enhancing Fatty Acyl-CoA Pools in Saccharomyces cerevisiae.

Dabirian Y, Gonçalves Teixeira P, Nielsen J, Siewers V, David F.

ACS Synth Biol. 2019 Aug 16;8(8):1788-1800. doi: 10.1021/acssynbio.9b00118. Epub 2019 Jul 30.

PMID:
31314504
5.

Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals.

Hu Y, Zhu Z, Nielsen J, Siewers V.

Open Biol. 2019 May 31;9(5):190049. doi: 10.1098/rsob.190049.

6.

Effects of overexpression of STB5 in Saccharomyces cerevisiae on fatty acid biosynthesis, physiology and transcriptome.

Bergman A, Vitay D, Hellgren J, Chen Y, Nielsen J, Siewers V.

FEMS Yeast Res. 2019 May 1;19(3). pii: foz027. doi: 10.1093/femsyr/foz027.

7.

Identification of genes involved in shea butter biosynthesis from Vitellaria paradoxa fruits through transcriptomics and functional heterologous expression.

Wei Y, Ji B, Siewers V, Xu D, Halkier BA, Nielsen J.

Appl Microbiol Biotechnol. 2019 May;103(9):3727-3736. doi: 10.1007/s00253-019-09720-3. Epub 2019 Mar 26.

8.

Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis.

Wenning L, Ejsing CS, David F, Sprenger RR, Nielsen J, Siewers V.

Microb Cell Fact. 2019 Mar 11;18(1):49. doi: 10.1186/s12934-019-1098-9.

9.

Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae.

Bergman A, Hellgren J, Moritz T, Siewers V, Nielsen J, Chen Y.

Microb Cell Fact. 2019 Feb 1;18(1):25. doi: 10.1186/s12934-019-1072-6.

10.

Saccharomyces cerevisiae displays a stable transcription start site landscape in multiple conditions.

Börlin CS, Cvetesic N, Holland P, Bergenholm D, Siewers V, Lenhard B, Nielsen J.

FEMS Yeast Res. 2019 Mar 1;19(2). doi: 10.1093/femsyr/foy128.

PMID:
30590648
11.

Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative.

Dai Z, Huang M, Chen Y, Siewers V, Nielsen J.

Nat Commun. 2018 Aug 3;9(1):3059. doi: 10.1038/s41467-018-05409-9.

12.

Author Correction: Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals.

Yu T, Zhou YJ, Wenning L, Liu Q, Krivoruchko A, Siewers V, Nielsen J, David F.

Nat Commun. 2018 Jul 13;9:16220. doi: 10.1038/ncomms16220.

13.

Engineering lipid droplet assembly mechanisms for improved triacylglycerol accumulation in Saccharomyces cerevisiae.

Teixeira PG, David F, Siewers V, Nielsen J.

FEMS Yeast Res. 2018 Sep 1;18(6). doi: 10.1093/femsyr/foy060.

PMID:
29897501
14.

Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols.

Ferreira R, Teixeira PG, Gossing M, David F, Siewers V, Nielsen J.

Metab Eng Commun. 2018 Feb 3;6:22-27. doi: 10.1016/j.meteno.2018.01.002. eCollection 2018 Jun.

15.

Expression of cocoa genes in Saccharomyces cerevisiae improves cocoa butter production.

Wei Y, Bergenholm D, Gossing M, Siewers V, Nielsen J.

Microb Cell Fact. 2018 Jan 25;17(1):11. doi: 10.1186/s12934-018-0866-2.

16.

Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion.

Ferreira R, Teixeira PG, Siewers V, Nielsen J.

Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1262-1267. doi: 10.1073/pnas.1715282115. Epub 2018 Jan 22.

17.

Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter-like lipids.

Bergenholm D, Gossing M, Wei Y, Siewers V, Nielsen J.

Biotechnol Bioeng. 2018 Apr;115(4):932-942. doi: 10.1002/bit.26518. Epub 2018 Jan 24.

PMID:
29313898
18.

Engineering 1-Alkene Biosynthesis and Secretion by Dynamic Regulation in Yeast.

Zhou YJ, Hu Y, Zhu Z, Siewers V, Nielsen J.

ACS Synth Biol. 2018 Feb 16;7(2):584-590. doi: 10.1021/acssynbio.7b00338. Epub 2018 Jan 12.

PMID:
29284088
19.

Heterologous transporter expression for improved fatty alcohol secretion in yeast.

Hu Y, Zhu Z, Nielsen J, Siewers V.

Metab Eng. 2018 Jan;45:51-58. doi: 10.1016/j.ymben.2017.11.008. Epub 2017 Nov 26.

PMID:
29183749
20.

Engineering microbial fatty acid metabolism for biofuels and biochemicals.

Marella ER, Holkenbrink C, Siewers V, Borodina I.

Curr Opin Biotechnol. 2018 Apr;50:39-46. doi: 10.1016/j.copbio.2017.10.002. Epub 2017 Nov 1. Review.

21.

Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals.

Yu T, Zhou YJ, Wenning L, Liu Q, Krivoruchko A, Siewers V, Nielsen J, David F.

Nat Commun. 2017 May 26;8:15587. doi: 10.1038/ncomms15587. Erratum in: Nat Commun. 2018 Jul 13;9:16220.

22.

Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae.

Teixeira PG, Ferreira R, Zhou YJ, Siewers V, Nielsen J.

Microb Cell Fact. 2017 Mar 15;16(1):45. doi: 10.1186/s12934-017-0663-3.

23.

Prognostic Factors for Persistent Leg-Pain in Patients Hospitalized With Acute Sciatica.

Fjeld O, Grotle M, Siewers V, Pedersen LM, Nilsen KB, Zwart JA.

Spine (Phila Pa 1976). 2017 Mar;42(5):E272-E279. doi: 10.1097/BRS.0000000000001773.

PMID:
28244968
24.

Effects of acetoacetyl-CoA synthase expression on production of farnesene in Saccharomyces cerevisiae.

Tippmann S, Ferreira R, Siewers V, Nielsen J, Chen Y.

J Ind Microbiol Biotechnol. 2017 Jun;44(6):911-922. doi: 10.1007/s10295-017-1911-6. Epub 2017 Feb 9.

25.

Increasing cocoa butter-like lipid production of Saccharomyces cerevisiae by expression of selected cocoa genes.

Wei Y, Gossing M, Bergenholm D, Siewers V, Nielsen J.

AMB Express. 2017 Dec;7(1):34. doi: 10.1186/s13568-017-0333-1. Epub 2017 Feb 6.

26.

Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions.

Wei Y, Siewers V, Nielsen J.

Appl Microbiol Biotechnol. 2017 May;101(9):3577-3585. doi: 10.1007/s00253-017-8126-7. Epub 2017 Feb 6.

27.

Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae.

Wenning L, Yu T, David F, Nielsen J, Siewers V.

Biotechnol Bioeng. 2017 May;114(5):1025-1035. doi: 10.1002/bit.26220. Epub 2016 Nov 21.

PMID:
27858995
28.

Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae.

Bergman A, Siewers V, Nielsen J, Chen Y.

AMB Express. 2016 Dec;6(1):115. doi: 10.1186/s13568-016-0290-0. Epub 2016 Nov 15.

29.

Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments.

Fletcher E, Feizi A, Bisschops MMM, Hallström BM, Khoomrung S, Siewers V, Nielsen J.

Metab Eng. 2017 Jan;39:19-28. doi: 10.1016/j.ymben.2016.10.010. Epub 2016 Nov 2.

PMID:
27815194
30.

Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition.

Zhou YJ, Buijs NA, Zhu Z, Gómez DO, Boonsombuti A, Siewers V, Nielsen J.

J Am Chem Soc. 2016 Nov 30;138(47):15368-15377. Epub 2016 Oct 31.

PMID:
27753483
31.

Affibody Scaffolds Improve Sesquiterpene Production in Saccharomyces cerevisiae.

Tippmann S, Anfelt J, David F, Rand JM, Siewers V, Uhlén M, Nielsen J, Hudson EP.

ACS Synth Biol. 2017 Jan 20;6(1):19-28. doi: 10.1021/acssynbio.6b00109. Epub 2016 Aug 30.

PMID:
27560952
32.

Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories.

Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J.

Nat Commun. 2016 May 25;7:11709. doi: 10.1038/ncomms11709.

33.

Flux Control at the Malonyl-CoA Node through Hierarchical Dynamic Pathway Regulation in Saccharomyces cerevisiae.

David F, Nielsen J, Siewers V.

ACS Synth Biol. 2016 Mar 18;5(3):224-33. doi: 10.1021/acssynbio.5b00161. Epub 2016 Jan 26.

PMID:
26750662
34.

Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica.

Shi S, Ji H, Siewers V, Nielsen J.

FEMS Yeast Res. 2016 Feb;16(1):fov108. doi: 10.1093/femsyr/fov108. Epub 2015 Dec 10.

PMID:
26658002
35.

Physiological and transcriptional characterization of Saccharomyces cerevisiae engineered for production of fatty acid ethyl esters.

de Jong BW, Siewers V, Nielsen J.

FEMS Yeast Res. 2016 Feb;16(1):fov105. doi: 10.1093/femsyr/fov105. Epub 2015 Nov 21.

PMID:
26590613
36.

RNA-seq analysis of Pichia anomala reveals important mechanisms required for survival at low pH.

Fletcher E, Feizi A, Kim S, Siewers V, Nielsen J.

Microb Cell Fact. 2015 Sep 16;14:143. doi: 10.1186/s12934-015-0331-4.

37.

Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine.

Qin J, Zhou YJ, Krivoruchko A, Huang M, Liu L, Khoomrung S, Siewers V, Jiang B, Nielsen J.

Nat Commun. 2015 Sep 8;6:8224. doi: 10.1038/ncomms9224.

38.

Enhanced ethanol production and reduced glycerol formation in fps1∆ mutants of Saccharomyces cerevisiae engineered for improved redox balancing.

Navarrete C, Nielsen J, Siewers V.

AMB Express. 2014 Dec;4(1):86. doi: 10.1186/s13568-014-0086-z. Epub 2014 Dec 11.

39.

Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain.

Zhang Y, Liu G, Engqvist MK, Krivoruchko A, Hallström BM, Chen Y, Siewers V, Nielsen J.

Microb Cell Fact. 2015 Aug 8;14:116. doi: 10.1186/s12934-015-0305-6.

40.

Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed.

Tippmann S, Scalcinati G, Siewers V, Nielsen J.

Biotechnol Bioeng. 2016 Jan;113(1):72-81. doi: 10.1002/bit.25683. Epub 2015 Sep 2.

PMID:
26108688
41.

Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae.

López J, Essus K, Kim IK, Pereira R, Herzog J, Siewers V, Nielsen J, Agosin E.

Microb Cell Fact. 2015 Jun 12;14:84. doi: 10.1186/s12934-015-0273-x.

42.

Functional pyruvate formate lyase pathway expressed with two different electron donors in Saccharomyces cerevisiae at aerobic growth.

Zhang Y, Dai Z, Krivoruchko A, Chen Y, Siewers V, Nielsen J.

FEMS Yeast Res. 2015 Jun;15(4):fov024. doi: 10.1093/femsyr/fov024. Epub 2015 May 15.

PMID:
25979691
43.

Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival.

Goossens KV, Ielasi FS, Nookaew I, Stals I, Alonso-Sarduy L, Daenen L, Van Mulders SE, Stassen C, van Eijsden RG, Siewers V, Delvaux FR, Kasas S, Nielsen J, Devreese B, Willaert RG.

MBio. 2015 Apr 14;6(2). pii: e00427-15. doi: 10.1128/mBio.00427-15.

44.

Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase.

Chen Y, Zhang Y, Siewers V, Nielsen J.

FEMS Yeast Res. 2015 May;15(3). pii: fov015. doi: 10.1093/femsyr/fov015. Epub 2015 Apr 6.

PMID:
25852051
45.

Enabling technologies to advance microbial isoprenoid production.

Chen Y, Zhou YJ, Siewers V, Nielsen J.

Adv Biochem Eng Biotechnol. 2015;148:143-60. doi: 10.1007/10_2014_284. Review.

PMID:
25549781
46.

Long-chain alkane production by the yeast Saccharomyces cerevisiae.

Buijs NA, Zhou YJ, Siewers V, Nielsen J.

Biotechnol Bioeng. 2015 Jun;112(6):1275-9. doi: 10.1002/bit.25522. Epub 2015 Jan 16.

PMID:
25545362
47.

Microbial acetyl-CoA metabolism and metabolic engineering.

Krivoruchko A, Zhang Y, Siewers V, Chen Y, Nielsen J.

Metab Eng. 2015 Mar;28:28-42. doi: 10.1016/j.ymben.2014.11.009. Epub 2014 Dec 5.

PMID:
25485951
48.

Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.

de Jong BW, Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J.

J Ind Microbiol Biotechnol. 2015 Mar;42(3):477-86. doi: 10.1007/s10295-014-1540-2. Epub 2014 Nov 25.

PMID:
25422103
49.

Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae.

Zhou YJ, Buijs NA, Siewers V, Nielsen J.

Front Bioeng Biotechnol. 2014 Sep 1;2:32. doi: 10.3389/fbioe.2014.00032. eCollection 2014. Review.

50.

Advances in yeast genome engineering.

David F, Siewers V.

FEMS Yeast Res. 2015 Feb;15(1):1-14. Epub 2015 Jan 14.

PMID:
25154295

Supplemental Content

Loading ...
Support Center